SOFTWARE VECTORS

INTRODUCTION

We have already seen that one of the most important features of RISC OS is the ease with which it can be
altered and extended. Most of RISC OS is written as modules; these can be replaced, and extra ones can be

added.

The exception to this is the kernel, which provides the central core of functions necessary for RISC OS to
work. You cannot replace the entire kernel. Instead, you can change or replace how certain fundamental
routines of the RISC OS kernel work. You do this by using software vectors, or vectors for short. These are
held in the computer's RAM; RISC OS uses them to record where it can find these routines.

Many of these routines perform all the functions of a given SWI. The corresponding SWI is then known as a
vectored SWI.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

OVERVIEW

OVERVIEW

Claiming vectors

When you call a SWI, RISC OS uses the SWI number to decide which routine in the RISC OS ROMs you want.
For an ordinary SWI, RISC OS looks up the address of the SWI routine and then branches to it. However, if
you call a vectored SWI, it instead gets the address from the corresponding vector that is held in RAM.
Normally this would be the address of the standard routine held in ROM.

You can change this address by using the SWI OS_Claim (on page 8), documented later in this chapter.
RISC OS will then instead branch to your own routine, held at the address you pass to OS_Claim.

Your own routine can do one of the following:

replace the original routine, passing control directly back to the caller

do some processing before calling the standard routine, which then passes control back to the caller
call the standard routine, process some of the results it returns, and then pass control back to the
caller.

If your routine completely replaces the standard one, it is said to intercept the call; otherwise it is said to
pass on the call.

An example

As an example, let's look at the SWI OS_WriteC (on page 0) routine. When RISC OS decodes a SWI with SWI
number &00, it knows that you are requesting a write character operation. RISC OS gets an address from a
vector - in this case called WrchV (on page 0) - and passes control to the routine.

Now by default, the WrchV contains the address of the standard write character routine in ROM. If you
claim the vector using SWI OS_Claim (on page 8), whenever an OS_WriteC is executed, your own routine
will be called first.

Vector chains

So far, we've deliberately been vague about how vectors store the addresses of the routine. In fact, the
vector is the head of a chain of structures, which point to the next claimant on the vector, and to both the
code and the workspace associated with this claimant. Consequently:

there may be more than one routine on a given vector

no claimant has to remember what the previous owner of the vector was

vectors can be claimed and released by many different pieces of software in any order, not justin a
stack-like order.

The routines are called in the reverse order to the order in which they called SWI OS_Claim (on page 8). The
last routine to OS_Claim the vector will be the first one called. If that routine passes the call on, the next
most recent claimant will get the call, and so on. If any of the routines on the vector intercept the call, the
earlier claimants will not be called.

../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#vector_wrchv

SOFTWARE VECTORS

When not to intercept a vector

There are some vectors which should not be intercepted; they must always be passed on to other
claimants. This is because the default owner, ie the routine which is called if no one has claimed the vector,
might perform some important action. The error vector, ErrorV (on page 0), is a good example. The default
owner of this vector is a routine which calls the error handler. If you intercept ErrorV, the error handler will
never be called, and errors won't be dealt with properly.

Multiply installing the same routine

When SWI OS_Claim (on page 8) adds a routine to a vector, it automatically removes any identical earlier
instances of the routine from the chain (ie instances having the same pointer to code, and the same
pointer to workspace). If you don't want this to happen, use the SWI OS_AddToVector (on page 13) instead.

Desktop applications

Under an environment such as the desktop, multiple applications are run concurrently. The currently
running application is mapped into memory at &8000. Desktop applications periodically return control to
the Window Manager (or Wimp) by calling the SWI Wimp_Poll (on page 0); at this point the Wimp may
decide to swap to another application. In doing so, it maps the current application out of the application
space, and maps the new application into that space. Thus every application is given the illusion that it is
the only one in the system.

If your application has claimed a vector using a routine in its own space, it must obviously release that
vector each time it (and the claiming routine) may be swapped out of application space. Before each call
your application makes to Wimp_Poll (which is when it may be swapped out), it must call SWI
OS_DelinkApplication (on page 14) to remove any claiming routines in application space. When its call to
Wimp_Poll returns (and hence it is swapped back in), it must then call SWI OS_RelinkApplication (on page
15) to reclaim those vectors.

errors.html#vector_errorv
../desktop/wimp/task_scheduling.html#swi_wimp_poll

TECHNICAL DETAILS

TECHNICAL DETAILS

Use of registers

If you write a routine that uses a vector, it must obey the same entry and exit conditions as the
corresponding RISC OS routine. For example, a routine on WrchV (on page 0) must preserve all registers,
just as the SWI OS_WriteC (on page 0) does.

If you pass the call on, you can deliberately alter some of the registers to change the effect of the call.
However, if you do so, you must arrange for control to return again to your routine. You must then restore
the register values that the old routine would normally have returned, before finally returning control to
the calling program. This is because some applications might rely on the returned values being those
documented in this manual.

Processor modes

The processor mode in which the routine is entered depends on the vector:

Routines vectored through IrqV (on page 17) are always executed in IRQ mode.

Routines vectored through Vectors &10 to &16 (EventV (on page 0), InsV (on page 19), KeyV (on page
0), RemV (on page 25), CnpV (on page 31)) and TickerV (on page 34) are generally executed in IRQ
mode, but may be executed in SVC mode if called using SWI OS_CallAVector (on page 12), and in
certain other unspecified circumstances.

° All other routines are executed in SVC mode - the mode entered when the SWI instruction is
executed.
SVC mode

Note that if you call a SWI from a routine that is in SVC mode, you will corrupt the return address held in
R14. Consequently, your routine should use the full, descending stack addressed by R13 to save R14 first.
See the section entitled Important notes (on page 0) for a more complete explanation of this.

IRQ mode

If your routine will be entered in IRQ mode there are other restrictions. These are detailed in full in the
Restrictions (on page 0).

Returning errors

Routines using most of the vectors can return errors by setting the V flag, and storing an error pointer in
RO. The routine must not pass on the call, as one of the parameters (R0) has been changed; this would
cause problems for the next routine on the vector. The routine must instead intercept the call, returning
control back to the calling program.

You can't do this with all the vectors; some of them (those involving IRQ calls in particular) have nowhere to
send the error to.

../kernel/io/charoutput.html#vector_wrchv
../kernel/io/charoutput.html#swi_os_writec
events.html#vector_eventv
../hardware/keyboard.html#vector_keyv
../hardware/keyboard.html#vector_keyv
swi.html#subsection_important_notes
interrupthandling.html#subsection_restrictions

SOFTWARE VECTORS

Returning from a vectored routine

You should use one of two methods to return from a vectored routine. These are described immediately
below; for an example, see the example program (on page 39).

Passing on the call

If you wish to pass on the call (to the previous owner), you should return by copying R14 into the PC. Use
the instruction:

MOVS PC,R14

Intercepting the call

If you wish to intercept the call, you should pull an exit address (which has been set up by RISC OS) from
the stack and jump to it. Use the instruction:

LDMFD R13!, {PC}
Control will return to the caller of the vector.
More complex uses of vectors

Sometimes, you may want to do more complex things with a vector, such as:

° preprocessing registers to alter the effect of a standard routine
) postprocessing to change the effect of future calls
° repeatedly calling a routine or group of routines.

There are a number of important things to remember if you are doing so. You must make sure that:

° the vector still looks exactly the same to a program that is calling it, even if it now does different
things

° your routine will cope with being called in all the processor modes that its vector uses (for example,
SVC or IRQ mode for a routine on InsV (on page 19))

° the values of R10 and R11 are preserved when earlier claimants of the vector are repeatedly called.

Vector defintions
In most cases, the interrupt status is given as undefined. This is because the vectors may be called either

by the SWI(s) which normally use them, many of which ensure a given interrupt status, or by SWI
OS_CallAVector (on page 12), which does not alter the interrupt status.

List of software vectors

The software vectors are listed below. The names of the routines which can cause each vector to be called
are in brackets:

TECHNICAL DETAILS

Number | Vector Description
&00 | UserV User vector (on page 16) is reserved and must not be used
&01 | ErrorV Error vector (on page 0) (SWI OS_GenerateError (on page 0))
&02 | IrqV Unknown interrupt vector (on page 17)
&03 | WrchV Write character vector (on page 0) (SWI OS_WriteC (on page 0))
&04 | RdchV Read character vector (on page 0) (SWI OS_ReadC (on page 0))
&05 | CLIV Command line interpreter vector (on page 0) (SWI OS_CLI (on page 0))
&06 | ByteV OS_Byte indirection vector (on page 0) (SWI OS_Byte (on page 0))
&07 | WordV OS_Word indirection vector (on page 0) (SWI OS_Word (on page 0))
&08 | FileV File read/write vector (on page 0) (SWI OS_File (on page 0))
&09 | ArgsV File arguments read/write vector (on page 0) (SWI OS_Args (on page 0))
&0A | BGetV File byte read vector (on page 0) (SWI OS_BGet (on page 0))
&0B | BPutV File byte put vector (on page 0) (SWI OS_BPut (on page 0))
&0C | GBPBV File byte block get/put vector (on page 0) (SWI OS_GBPB (on page 0))
&0D | FindV File open vector (on page 0) (SWI OS_Find (on page 0))
&O0E | ReadLineV Read a line of text vector (on page 0) (SWI OS_ReadLine (on page 0))
&0F | FSCV Filing system control vector (on page 0) (SWI OS_FSControl (on page 0))
&10 | EventV Event vector (on page 0) (SWI OS_GenerateEvent (on page 0))
&11 Reserved
&12 Reserved
&13 | KeyV Key vector (on page 0)
&14 | InsV Buffer insert vector (on page 19) (SWI OS_Byte 138 (on page 0))
&15| RemV Buffer remove vector (on page 25) (SWI OS_Byte 145 (on page 0))
&16 | CnpV Count/Flush Buffer vector (on page 31) (SWI OS_Byte 21 (on page 0) &
SWI OS_Byte 152 (on page 0))
&17 | UKVDU23V Unknown VDU23 vector (on page 0) (SWI OS_WriteC (on page 0))
&18 | UKSWIV Unknown SWI vector (on page 33)
&19 | UKPLOTV Unknown VDU25 vector (on page 0) (SWI OS_Plot (on page 0))
&1A | MouseV Mouse vector (on page 0) (SWI OS_Mouse (on page 0))
&1B | VDUXV VDU vector (on page 0) (SWI OS_WriteC (on page 0))
&1C | TickerV 100Hz vector (on page 34)
&1D | UpcallVv Warning vector (on page 0) (SWI OS_UpCall (on page 0))
&1E | ChangeEnvironmentV | Environment change vector (on page 0) (SWI OS_ChangeEnvironment

(on page 0))

&1F | SpriteV Sprite indirection vector (on page 0) (SWI OS_SpriteOp (on page 0))

&20 | DrawV Draw SWI vector (on page 35) (all Draw (on page 0) SWI calls)

&21 | EconetV Econet activity vector (on page 37) (all Econet (on page 0) SWI calls)

&22 | ColourV ColourTrans SWI vector (on page 0) (all ColourTrans (on page 0) SWI
calls)

&23 | PaletteV Read/write palette vector (on page 0)

&24 | SerialV OS_SerialOp indirection vector (on page 0) (SWI OS_SerialOp (on page

errors.html#vector_errorv
errors.html#swi_os_generateerror
../kernel/io/charoutput.html#vector_wrchv
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charinput.html#vector_rdchv
../kernel/io/charinput.html#swi_os_readc
../programmers/cli/cli.html#vector_cliv
../programmers/cli/cli.html#swi_os_cli
osbyte.html#vector_bytev
osbyte.html#swi_os_byte
osword.html#vector_wordv
osword.html#swi_os_word
../filesystems/fileswitch.html#vector_filev
../filesystems/fileswitch.html#swi_os_file
../filesystems/fileswitch.html#vector_argsv
../filesystems/fileswitch.html#swi_os_args
../filesystems/fileswitch.html#vector_bgetv
../filesystems/fileswitch.html#swi_os_bget
../filesystems/fileswitch.html#vector_bputv
../filesystems/fileswitch.html#swi_os_bput
../filesystems/fileswitch.html#vector_gbpbv
../filesystems/fileswitch.html#swi_os_gbpb
../filesystems/fileswitch.html#vector_findv
../filesystems/fileswitch.html#swi_os_find
../kernel/io/charinput.html#vector_readlinev
../kernel/io/charinput.html#swi_os_readline
../filesystems/fileswitch.html#vector_fscv
../filesystems/fileswitch.html#swi_os_fscontrol
events.html#vector_eventv
events.html#swi_os_generateevent
../hardware/keyboard.html#vector_keyv
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-152
../graphics/vdudrivers.html#vector_ukvdu23v
../kernel/io/charoutput.html#swi_os_writec
../graphics/vdudrivers.html#vector_ukplotv
../graphics/vdudrivers.html#swi_os_plot
../graphics/vdudrivers.html#vector_mousev
../graphics/vdudrivers.html#swi_os_mouse
../graphics/vdudrivers.html#vector_vduxv
../kernel/io/charoutput.html#swi_os_writec
communications.html#vector_upcallv
communications.html#swi_os_upcall
../kernel/progenv/progenv_handlers.html#vector_changeenvironmentv
../kernel/progenv/progenv_handlers.html#swi_os_changeenvironment
../kernel/progenv/progenv_handlers.html#swi_os_changeenvironment
../graphics/sprites.html#vector_spritev
../graphics/sprites.html#swi_os_spriteop
../graphics/draw.html#section_swi_calls
../networking/legacy/econet.html#section_swi_calls
../graphics/colourtrans.html#vector_colourv
../graphics/colourtrans.html#section_swi_calls
../graphics/palettevector.html#vector_palettev
../hardware/serialdevice.html#vector_serialv
../hardware/serialdevice.html#swi_os_serialop

SOFTWARE VECTORS

Number | Vector Description
0))
&25 | FontV Font manager
&26 | PointerV Mouse drivers (on page 0)
&27 | TimeShareV SkyNet
&28 | LowPriorityEventV For future expansion
&29 | FastTickerV Like TickerV, but faster (RISCOS Ltd)
&2A | GraphicsV Graphics hardware abstraction
&2B [UnthreadV High-priority callbacks
&2C | VideoV Graphics abstraction (RISCOS Ltd)
&2D | SeriousErrorV Handling of “serious errors” and exceptions
&3E [NVRAMV NVRAM hardware abstraction (RISCOS Ltd)
&3F | RTCV RTC hardware abstraction (RISCOS Ltd)

All other vectors are currently reserved.

Additional information on software vectors

Many of the vectors are by default used to indirect calls of SWIs, and so the routine they call is the same as
that the SWI calls.

About the filing system vectors

Note that the filing system vectors FileV (Vector &08) to FindV (Vector &0D) have 'no default action', ie they
return immediately. However, the FileSwitch (on page 0) module SWI OS_Claim (on page 8)s the vectors
whenever the machine is reset, so effectively the default action is to perform the appropriate filing system

routine.

Other vectors and resets

Vectors are freed on any kind of reset, and system extension modules must claim them again if they need
to - just as FileSwitch does.

../hardware/serialdevice.html#swi_os_serialop
../hardware/mouse.html#vector_pointerv
../filesystems/fileswitch.html#chapter_fileswitch

SWI CALLS

SWI CALLS

Adds a routine to the list of those that claim a vector

On entry

RO =vector number (see List of software vectors (on page 5))
R1=address of claiming routine that is to be added to vector
R2 =value to be passed in R12 when the routine is called

On exit

RO preserved
R1 preserved
R2 preserved

Interrupts
Interrupts are disabled

Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

0S _Claim
(SWI &1F)

This call adds the routine whose address is given in R1 to the list of routines claiming the vector. This

becomes the first routine to be used when the vector is called.

Any identical earlier instances of the routine are removed. Routines are defined to be identical if the values

passed in RO, R1 and R2 are identical.

The R2 value enables the routine to have a workspace pointer set up in R12 when it is called. If the routine
using the vector is in a module (as will often be the case), this pointer will usually be the same as its

module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

Examples

MOV RO, #ByteV

ADR R1, MyByteHandler
MOV R2, #0

SWI "OS Claim"

Related SWiIs

SWI OS_Release (on page 10)
SWI OS_CallAVector (on page 12)
SWI OS_AddToVector (on page 13)

SOFTWARE VECTORS

SWI CALLS

0OS _Release
(SWI &20)

Removes a routine from the list of those that claim a vector

On entry

RO =vector number (see List of software vectors (on page 5))
R1=address of routine that is to be released from vector
R2 =value given in R2 when claimed

On exit

RO preserved
R1 preserved
R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call removes the routine, which is identified by both its address and workspace pointer, from the list
for the specified vector. The routine will no longer be called. If more than one copy of the routine is
claiming the vector, only the first one to be called is removed.

Note that this SWI cannot be re-entered as it disables IRQs.

Examples

MOV RO, #ByteV

ADR R1, MyByteHandler
MOV R2, #0

SWI "OS Release"

10

Related SWiIs

SWI OS_Claim (on page 8)
SWI OS_CallAVector (on page 12)
SWI OS_AddToVector (on page 13)

SOFTWARE VECTORS

n

SWI CALLS

0S CallAVector
(SWI &34)

Calls a vector directly

On entry

RO - R8=vector routine parameters
R9 =vector number (see List of software vectors (on page 5))

On exit

RO - R9 =depends on vector called
Cflag flag pass to vector
V flag flag pass to vector

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS_CallAVector calls the vector number given in R9. RO - R8 are parameters to the vectored routine; see the
descriptions below for details.

This is used for calling vectored routines which don't have any other entry point, such as some calls to
RemV (on page 25) or CnpV (on page 31). It is also used by system extensions such as the Draw module (on
page 0), ColourTrans (on page 0) and Econet (on page 0) modules to call their corresponding vectors.

You must not use this SWI to call ByteV (on page 0) and other such vectors, as the vector handlers expect
entry conditions you may not provide.

Note that although this SWI is re-entrant, the vectors that it calls may not be.

Related SWiIs

SWI OS_Claim (on page 8)
SWI OS_Release (on page 10)
SWI OS_AddToVector (on page 13)

12

../graphics/draw.html#chapter_draw_module
../graphics/draw.html#chapter_draw_module
../graphics/colourtrans.html#chapter_colourtrans
../networking/legacy/econet.html#chapter_econet
osbyte.html#vector_bytev

SOFTWARE VECTORS

0OS _AddToVector
(SWI &47)

Adds a routine to the list of those that claim a vector

On entry

RO =vector number (see List of software vectors (on page 5))
R1=address of claiming routine
R2=value to be passed in R12 when the routine is called

On exit

RO preserved
R1 preserved
R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call adds the routine whose address is given in R1 to the list of routines claiming the vector. This
becomes the first routine to be used when the vector is called.

Unlike SWI OS_Claim (on page 8), any earlier instances of the same routine remain on the vector chain.

The R2 value enables the routine to have a workspace pointer set up in R12 when it is called. If the routine
using the vector is in a module (as will often be the case), this pointer will usually be the same as its
module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

Related SWiIs

SWI OS_Claim (on page 8)
SWI OS_Release (on page 10)
SWI OS_CallAVector (on page 12)

13

SWI CALLS

Remove any vectors that an application is using

On entry

RO = pointer to buffer
R1=buffer size in bytes

On exit

RO preserved
R1=number of bytes left in buffer

Interrupts
Interrupts are disabled

Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

0S _DelinkApplication
(SWI &4D)

When an application running in application space (at &8000) is going to be swapped out, it must remove all
vectors that it uses. Otherwise, if they were activated, they would jump into whatever happened to be at

that location in the new application running in that space.

RO on entry points to a buffer. This is used to store details of the vectors used, so that they can be restored
afterwards. Each vector requires 12 bytes of storage and the list is terminated by a single byte.

If the space left returned in R1 is zero, then you must allocate another buffer and repeat the call; the buffer
you have contains valid information. When you relink you must pass all the buffers returned by this call.

Note that this SWI cannot be re-entered as it disables IRQs.

Related SWis
SWI OS_RelinkApplication (on page 15)

14

SOFTWARE VECTORS

0S_RelinkApplication
(SWI &4E)

Restore from a buffer any vectors that an application is using

On entry
RO = pointer to buffer

On exit

RO preserved

Interrupts

Interrupts are not altered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

When an application is going to be swapped in, all vectors that it uses must be restored. RO on entry points
to a buffer, which has previously been created by SWI OS_DelinkApplication (on page 14).

Related SWIs
SWI OS_DelinkApplication (on page 14)

15

SOFTWARE VECTORS

SOFTWARE VECTORS

Vector UserV
(Vector &00)

Reserved vector

On entry

None

On exit

None
Interrupts
Interrupts are undefined

Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy

Not defined

Use

UserV is a reserved vector, and you must not use it. Its default action is to do nothing.

Related APIs

None

16

SOFTWARE VECTORS

Vector IrqV
(Vector &02)

Called when an unknown IRQ is detected

On entry

None

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in irqg mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called when an unknown IRQ is detected.

It was provided in the Arthur operating system so you could add interrupt generating devices of your own
to the computer. RISC OS provides a new method of doing so that is more efficient, which you should use in
preference. This vector has been kept for compatibility.

The default action is to disable the interrupt generating device by masking it out in the IOC chip.

Routines that claim this vector must not corrupt any registers. You must not call this vector using SWI
OS_CallAVector (on page 12).

You must intercept calls to this vector and service the interrupt if the device is yours. You must pass them
on to earlier claimants if the device is not yours, so that interrupt handlers written to run under Arthur can
still trap interrupts they recognise.

Old software that handled Sound interrupts using this vector will no longer work, as the new Sound
module exclusively uses the RISC OS SoundIRQ device handler.

See the chapter entitled Interrupts and handling them (on page 0) for details of how to add interrupt
generating devices to your computer, and the chapter entitled Handlers (on page 0) for more about
handlers.

17

interrupthandling.html#chapter_interrupts_and_handling_them
../kernel/progenv/progenv_handlers.html#chapter_handlers

SOFTWARE VECTORS

Related APIs

None

18

SOFTWARE VECTORS

Vector InsV
(Vector &14)

Called to place a byte or block in a buffer

On entry

R1=operation flag:

Bit(s) | Meaning
0-30 | Buffer number
31 | Clear: | Insert a byte in a buffer (on page 21)

Set: | Insert a block in a buffer (on page 23)

On exit

R1 preserved
Cflag flag =1 implies insertion failed

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on page 0). The default action is
to call the ROM routine to insert byte(s) into a buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 12). It must be called with interrupts disabled (the
OS_Bytes do this automatically), therefore code on the vector can only be entered with interrupts disabled
and is not re-entrant.

The C flag is used to indicate if the insertion failed; if C=1 then it was not possible to insert all the specified
data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not handled by
the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV (on page
19), RemV (on page 25) and CnpV (on page 31). Under later versions of RISC OS you must instead use the

19

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153

SOFTWARE VECTORS

buffer manager SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on page 0).

Related SWiIs

SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 12)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

20

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Insert a byte in a buffer

On entry

RO =byte to be inserted
R1=operation flag:

Bit(s) | Meaning

0-30 | Buffer number

31 | Clear: | Byte insertio

-}

On exit

RO preserved
R1 preserved
R2 corrupted

Cflag flag:

Value

Meaning

1

Insertion failed

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

SOFTWARE VECTORS

Vector InsV 0O
InsertBytelnBuffer
(Vector &14)

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on page 0). The default action is
to call the ROM routine to insert byte(s) into a buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 12). It must be called with interrupts disabled (the
OS_Bytes do this automatically), therefore code on the vector can only be entered with interrupts disabled
and is not re-entrant.

The C flag is used to indicate if the insertion failed; if C=1 then it was not possible to insert all the specified
data, or the specified byte.

21

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153

SOFTWARE VECTORS

Block operations are not available in RISC OS 2, nor are they available for buffers that are not handled by
the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV (on page
19), RemV (on page 25) and CnpV (on page 31). Under later versions of RISC OS you must instead use the
buffer manager SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on page 0).

Related SWIs

SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 12)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

Related vectors

InsV (on page 19)

22

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Insert a block in a buffer

On entry
R1=operation flag:
Bit(s) | Meaning
0-30 | Buffer number
31 | Set: | Block insertion

R2 =pointer to first byte of data to be inserted
R3=number of bytes to insert

On exit

RO preserved
R1 preserved
R2 =pointer to remaining data to be inserted
R3 =number of bytes still to be inserted
Cflag flag:
Value | Meaning

1| Insertion failed

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

SOFTWARE VECTORS

Vector InsV 1
InsertBlockinBuffer
(Vector &14)

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on page 0). The default action is
to call the ROM routine to insert byte(s) into a buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 12). It must be called with interrupts disabled (the
OS_Bytes do this automatically), therefore code on the vector can only be entered with interrupts disabled

and is not re-entrant.

23

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153

SOFTWARE VECTORS

The C flag is used to indicate if the insertion failed; if C=1 then it was not possible to insert all the specified
data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not handled by
the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV (on page
19), RemV (on page 25) and CnpV (on page 31). Under later versions of RISC OS you must instead use the
buffer manager SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on page 0).

Related SWIs

SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 12)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

Related vectors

InsV (on page 19)

24

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Called to remove a byte or block from a buffer

On entry

R1=operation flag:

Bit(s)

Meaning

0-30

Buffer number

31

Clear:

Remove a byte from a buffer (on page 27)

Set:

Remove a block from a buffer (on page 29)

Vflag flag:

Value

Meaning

0

Data should be removed

Buffer to be examined only

On exit

R1 preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

SOFTWARE VECTORS

Vector RemV

(Vector &15)

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152 (on page 0). The default action is

to call the ROM routine to examine or remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 12). It must be called with interrupts disabled (the
OS_Bytes do this automatically), therefore code on the vector can only be entered with interrupts disabled

and is not re-entrant.

The Cflag is used to indicate if the operation failed; if C=1 then it was not possible to remove/examine all
the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not handled by

25

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152

SOFTWARE VECTORS

the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV, RemV and
CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs SWI Buffer_Create
(on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on page 0)

Related SWIs

SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 12)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

26

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Remove a byte from a buffer

On entry
R1=operation flag:
Bit(s) | Meaning
0-30 | Buffer number
31| Clear: | Byte removal

Vflag flag:

Value | Meaning

0 | Data should be removed

1

Buffer to be examined only

On exit

RO =next byte to be removed (examine option), or corrupted (remove option)

R1 preserved

R2 =byte removed (remove option), or corrupted (examine option)

Cflag flag:

Value

Meaning

1

Buffer was empty on entry

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

SOFTWARE VECTORS

Vector RemV 0
RemoveByteFromBuffer

(Vector &15)

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152 (on page 0). The default action is

to call the ROM routine to examine or remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 12). It must be called with interrupts disabled (the
OS_Bytes do this automatically), therefore code on the vector can only be entered with interrupts disabled

27

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152

SOFTWARE VECTORS

and is not re-entrant.

The C flag is used to indicate if the operation failed; if C=1 then it was not possible to remove/examine all
the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not handled by
the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV, RemV and
CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs SWI Buffer_Create
(on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on page 0)

Related SWiIs

SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 12)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

Related vectors

RemV (on page 25)

28

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Remove a block from a buffer

On entry

R1=operation flag:

Bit(s) | Meaning
0-30 | Buffer number

31 | Set: | Block removal

R2 =pointer to block to be filled
R3=number of bytes to place into block
Vflag flag:

Value | Meaning

0 | Data should be removed

1 | Buffer to be examined only

On exit

RO preserved
R1 preserved
R2 =pointer to updated buffer position
R3=number of bytes still to be removed
Cflag flag:
Value | Meaning

1 | Buffer was empty on entry

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

SOFTWARE VECTORS

Vector RemV 1
RemoveBlockFromBuffer
(Vector &15)

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152 (on page 0). The default action is
to call the ROM routine to examine or remove byte(s) from the system buffers.

29

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152

SOFTWARE VECTORS

It may also be called using SWI OS_CallAVector (on page 12). It must be called with interrupts disabled (the
OS_Bytes do this automatically), therefore code on the vector can only be entered with interrupts disabled
and is not re-entrant.

The C flag is used to indicate if the operation failed; if C=1 then it was not possible to remove/examine all
the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not handled by
the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV, RemV and
CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs SWI Buffer_Create
(on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on page 0)

Related SWIs

SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 12)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

Related vectors

RemV (on page 25)

30

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

SOFTWARE VECTORS

Vector CnpV
(Vector &16)

Called to count the number of entries/amount of space left in a buffer, or to flush the contents of a buffer

On entry

R1=buffer number
The V flag and C flag encode the operation required

On exit

RO corrupted
R1=count (LSB):
Bit(s) | Meaning

0-7 | Least significant 8 bits of count, if V flag = 0 on entry; else preserved
R2 =count (MSB):
Bit(s) | Meaning

0-23 | Most significant 24 bits of count, if V flag = 0 on entry; else preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called by SWI OS_Byte 15 (on page 0), SWI OS_Byte 21 (on page 0) and SWI OS_Byte 128 (on
page 0). The default action is to call the ROM routine to count the number of entries in a buffer, or to flush
the contents of a buffer.

It may also be called using SWI OS_CallAVector (on page 12). It must be called with interrupts disabled (the
OS_Bytes do this automatically), therefore code on the vector can only be entered with interrupts disabled
and is not re-entrant.

This vector can be entered in either IRQ or SVC mode.

The V flag gives a reason code that determines the operation:

31

buffers.html#swi_os_byte-15
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-128
buffers.html#swi_os_byte-128

SOFTWARE VECTORS

Value | Meaning

0 | count the entries in a buffer
1 | flush the buffer

If the entries are to be counted then the result returned depends on the C flag on entry as follows:

Value | Meaning

0 | return the number of entries in the buffer

1| return the amount of space left in the buffer

This call also copes with buffer manager buffers.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV, RemV and
CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs SWI Buffer_Create
(on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on page 0)

Related SWiIs

SWI OS_Byte 15 (on page 0)

SWI OS_Byte 21 (on page 0)

SWI OS_Byte 128 (on page 0)
SWI OS_CallAVector (on page 12)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

32

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-15
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-128
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

SOFTWARE VECTORS

Vector UKSWIV
(Vector &18)

Called when an unknown SWI instruction is issued

On entry

RO - R8=as set up by the caller
R11=SWI number

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

This vector is called when a SWI is issued with an unknown SWI number. Before this vector is called, the OS
tries to pass the call to any modules which have SWI table entries in their header.

The default action is to call the Unused SWI handler, which by default returns a ‘No such SWI' error. See the
section entitled Unused SWI (on page 0) for full details.

This vector can be used to add large numbers of SWIs to the system from a single module. Normally only
64 SWIs can be added by a module; if you claim this vector, you can then trap any additional SWIs you wish
to add. (You should always use the module mechanism to add the first 64 SWIs that a module adds, as it is
more efficient than using this vector.) Note that you must get an allocation of SWI numbers from RISC OS
Open before adding any to commercially available software. This will avoid clashes between your own
software and other software.

See also the chapter entitled An introduction to SWIs (on page 0); and the chapter entitled Handlers (on
page 0) for more about handlers.

Related SWis
SWI OS_UnusedSWI (on page 0)

33

../kernel/progenv/progenv_handlers.html#subsubsection_unused_swi
https://www.riscosopen.org/content/allocate#link_allocation
swi.html#chapter_an_introduction_to_swis
../kernel/progenv/progenv_handlers.html#chapter_handlers
../kernel/progenv/progenv_handlers.html#chapter_handlers
../kernel/progenv/progenv_handlers.html#swi_os_unusedswi

SOFTWARE VECTORS

Vector TickerV
(Vector &1C)

Called every centisecond

On entry

None

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Not defined

Use

This vector is called every centisecond. It must never be intercepted, as this would prevent other clients
from being called.

Routines that take a long time (say > 100ps) may re-enable IRQ so long as they disable it again before
passing the call on. If you do so, other calls may be made to TickerV in the meantime. Your routine needs
to prevent or cope with re-entrancy. One way of ensuring that the code is single threaded is:

. to use a flag in its workspace to note that it is currently threaded, and:
° to keep a count of how many calls to TickerV have been missed while it was threaded, so the count
can be examined on exit and corrected for.

Related APIs

None

34

Used to indirect all SWI calls made to the Draw module

On entry

RO - R7 =depends on SWI issued
R8 =index of SWI within the Draw module SWI chunk:

Index | Decoded as SWI Call

SWI Draw_ProcessPath (on page 0)
SWI Draw_Fill (on page 0)

SWI Draw_Stroke (on page 0)

SWI Draw_StrokePath (on page 0)
SWI Draw_FlattenPath (on page 0)

|||~ |N|O

SWI Draw_TransformPath (on page 0)

On exit

RO - R10=depends on SWI issued
Interrupts
Interrupts are undefined

Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

SOFTWARE VECTORS

Vector DrawV
(Vector &20)

This vector is used to indirect all SWI calls made to the Draw module. The default action is to call the ROM

routine in the Draw module that decodes and executes SWISs.

See also the chapter entitled Draw module (on page 0)

35

../graphics/draw.html#swi_draw_processpath
../graphics/draw.html#swi_draw_fill
../graphics/draw.html#swi_draw_stroke
../graphics/draw.html#swi_draw_strokepath
../graphics/draw.html#swi_draw_flattenpath
../graphics/draw.html#swi_draw_transformpath
../graphics/draw.html#chapter_draw_module

SOFTWARE VECTORS

Related SWIs

SWI Draw_ProcessPath (on page 0)
SWI Draw_Fill (on page 0)

SWI Draw_Stroke (on page 0)

SWI Draw_StrokePath (on page 0)
SWI Draw_FlattenPath (on page 0)
SWI Draw_TransformPath (on page 0)

36

../graphics/draw.html#swi_draw_processpath
../graphics/draw.html#swi_draw_fill
../graphics/draw.html#swi_draw_stroke
../graphics/draw.html#swi_draw_strokepath
../graphics/draw.html#swi_draw_flattenpath
../graphics/draw.html#swi_draw_transformpath

SOFTWARE VECTORS

Vector EconetV
(Vector &21)

Called whenever there is activity on the Econet

On entry

RO=reason code (see below)
R1=total size of data, or amount of data transferred, or no parameter passed

On exit

RO preserved
R1 preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Not defined

Use

EconetV is called whenever there is activity on the Econet. The reason code tells you what the activity is.

The bottom nibble of the reason code indicates whether the activity has started (0), is part way through (1)
or finished (2). The next nibble gives the type of operation.

The table below shows the reason codes that are passed. The middle (and headless) column shows what is
passed in R1, or (for the less obvious cases) when the reason code is passed:

37

SOFTWARE VECTORS

Reason code Activity
&10 | R1 = total size of data NetFS_StartLoad
&11|R1 = amount of data transferred NetFS_PartLoad
&12 NetFS_FinishLoad
&20 | R1 = total size of data NetFS_StartSave
&21 | R1 = amount of data transferred NetFS_PartSave
&22 NetFS_FinishSave
&30 | R1 = total size of data NetFS_StartCreate
&31 | R1 = amount of data transferred NetFS_PartCreate
&32 NetFS_FinishCreate
&40 | R1 = total size of data NetFS_StartGetBytes
&41 | R1 = amount of data transferred NetFS_PartGetBytes
&42 NetFS_FinishGetBytes
&50 | R1 = total size of data NetFS_StartPutBytes
&51 | R1 = amount of data transferred NetFS_PartPutBytes
&52 NetFS_FinishPutBytes
&60 | start of a Broadcast_Wait NetFS_StartWait
&62 | end of a Broadcast_Wait NetFS_FinishWait
&70 | R1 = total size of data NetFS_StartBroadcastLoad
&71 | R1 = amount of data transferred NetFS_PartBroadcastLoad
&72 NetFS_FinishBroadcastLoad
&80 | R1 = total size of data NetFS_StartBroadcastSave>
&81 | R1 = amount of data transferred NetFS_PartBroadcastSave
&82 NetFS_FinishBroadcastSave
&CO | start to wait for a transmission to end | Econet_StartTransmission
&C2 | DoTransmit returns Econet_FinishTransmission
&DO | start to wait for a reception to end Econet_StartReception
&D2 | WaitForReception returns Econet_FinishReception

This vector is normally claimed by the NetStatus module, which uses the Hourglass module to display an
hourglass while the Econet is busy. It passes on the call. If the Hourglass module is disabled, the default
action is to do nothing. See the chapter entitled Hourglass (on page 0), and the chapter entitled NetStatus
(on page 0).

See also the chapter entitled NetFS (on page 0), the chapter entitled NetPrint (on page 0), and the chapter
entitled Econet (on page 0).

Related APIs

None

38

../graphics/hourglass.html#chapter_hourglass
../networking/legacy/netstatus.html#chapter_netstatus
../networking/legacy/netstatus.html#chapter_netstatus
../filesystems/netfs.html#chapter_netfs
../filesystems/netprint.html#chapter_netprint
../networking/legacy/econet.html#chapter_econet

SOFTWARE VECTORS

EXAMPLES

An example program

The example program below illustrates all these important points. You can adapt it to write your own
routines.

The program claims WrchV (on page 0), adding a routine that:

changes the case of the character depending on the state of a flag (preprocessing)

calls the remaining routines on the vector to write the altered character

toggles the flag (postprocessing)

ensures that all registers are set to the values that would be returned by the default write character
routine

) returns control to the calling program.

Note that the program releases the vector before ending, even if an error occurs.

DIM code$% 100

FOR pass%=0 TO 3 STEP 3

P%=code%

[OPT pass%

.vectorcode%

; save the entry value, the necessary state for the repeated call,
; and our workspace pointer

STMFD rl13!, {r0, rl1l0-rl2, rl4}

; do our preprocessing; as a trivial example, convert to the current case

LDRB rl4, [rl2] ; pick up upper/lowercase flag

CMP rl4, #0 ; decide which territory manager table to use
LDREQ rl, lowercase table%

LDRNE rl, uppercase table%

ILDRB r0, [rl, r0] ; look up character and put back in r0

; now do the call to the rest of the vector. Since this is WrchV, we know that
; we are in SVC mode; however, the code below will correctly call the rest of
; the vector whatever the mode.

STMFD rl13!, {rl5} ; pushes PC+12, complete with flags and mode
ADD rl2, rl3, #8 ; stack contains pc,r0,r10,r1l1l,rl2,rl4

; so point at the stacked rl0
LDMIA rl1l2, {rl0-rl12, rl5} ; and restore the state needed to call the

; rest of the chain (rl0 and rll), and
; “return” to the non-vector claiming address.
; The load of rl2 wastes one cycle.

; we are now at the pc+l2 that we stacked; this is therefore where the
; rest of the vector returns to when it has finished.

ILDR rl2, [rl3, #12] ; reload our workspace pointer
; Note that the offset of #12 - and the earlier
; #8 when we pushed onto the stack - refer to
; this example only and are not general

39

../kernel/io/charoutput.html#vector_wrchv

EXAMPLES

; Note also that the pc we pushed was
; pulled by the vector claimer.

; we could now do some more processing, set rO up to another character,
; and loop round to done preprocess$ again; instead, we’ll just do some
; example postprocessing; we’ll toggle our upper/lowercase flag.

LDRB rl4, [rl2]
EOR rl4, rl4, #1
STRB rl4d, [rl2]

; now return; if there was no error then intercept the call to the
; vector, returning the original character.

LDMVCFD r13!, {r0, rl1l0-rl2, rl4, rl5}

; could pass the call on instead by omitting rl4 from the addresses
; to pull - ie use LDMVCFD rl13!, {r0, rl1l0-rl2, rl5}

; there was an error; set up the correct error pointer, flags, and
; claim the vector.

STR r0, [rl3] ; save the error pointer
LDMFD r13!, {r0, rl10-rl1l2, rl4, rl5} ; return with V still set, and claim the vector

; reserve space to store the addresses of the territory manager case tables
.lowercase_ table%

EQUD 0

.uppercase_ table%

EQUD O

]

NEXT

REM Get addresses of the territory manager case tables
SYS “Territory LowerCaseTable”,-1 TO !lowercase table%
SYS “Territory UpperCaseTable”,-1 TO !uppercase_ table%
DIM flag% 1
?2flag%s=0
WrchV$%=3
ON ERROR SYS “XOS Release”, WrchV%, vectorcode%, flags: PRINTREPORTS: END
SYS “0S Claim”, WrchV%, vectorcode%, flag$
REPEAT

INPUT command$

OSCLI command$
UNTIL command$=""
SYS “XOS Release”, WrchV%, vectorcode%, flag$
END

40

SOFTWARE VECTORS

Document information

Maintainer(s): RISCOS Ltd <developer@riscos.com>

History: Revision Date Author Changes
1 ROL Initial version
2 04 Mar 2004 ROL Filled out from original document

e Summary of vectors added.
e IrqV documented.
e ColourV linked to (in ColourTrans documentation).
e PaletteV documented.
Disclaimer: Copyright © Pace Micro Technology plc, 2001.
Portions copyright © RISCOS Ltd, 2001-2004.
Published by RISCOS Limited.
No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

41

mailto:developer@riscos.com

	Software vectors
	Introduction
	Overview
	Claiming vectors
	An example
	Vector chains
	When not to intercept a vector
	Multiply installing the same routine
	Desktop applications

	Technical details
	Use of registers
	Processor modes
	SVC mode
	IRQ mode

	Returning errors
	Returning from a vectored routine
	Passing on the call
	Intercepting the call

	More complex uses of vectors
	Vector defintions
	List of software vectors
	Additional information on software vectors
	About the filing system vectors
	Other vectors and resets

	SWI Calls
	OS_Claim
	OS_Release
	OS_CallAVector
	OS_AddToVector
	OS_DelinkApplication
	OS_RelinkApplication

	Software vectors
	Vector UserV
	Vector IrqV
	Vector InsV
	Vector InsV 0 (InsertByteInBuffer)
	Vector InsV 1 (InsertBlockInBuffer)
	Vector RemV
	Vector RemV 0 (RemoveByteFromBuffer)
	Vector RemV 1 (RemoveBlockFromBuffer)
	Vector CnpV
	Vector UKSWIV
	Vector TickerV
	Vector DrawV
	Vector EconetV

	Examples
	An example program

	Document information
	Initial version
	Filled out from original document

