
Software vectors

We have already seen that one of the most important features of RISC OS is
the ease with which it can be altered and extended. Most of RISC OS is written
as modules; these can be replaced, and extra ones can be added.

The exception to this is the kernel, which provides the central core of
functions necessary for RISC OS to work. You cannot replace the entire
kernel. Instead, you can change or replace how certain fundamental routines
of the RISC OS kernel work. You do this by using software vectors, or vectors
for short. These are held in the computer's RAM; RISC OS uses them to record
where it can find these routines.

Many of these routines perform all the functions of a given SWI. The
corresponding SWI is then known as a vectored SWI.

InIntrtroductionoduction

Software vectors: Introduction 1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

When you call a SWI, RISC OS uses the SWI number to decide which routine
in the RISC OS ROMs you want. For an ordinary SWI, RISC OS looks up the
address of the SWI routine and then branches to it. However, if you call a
vectored SWI, it instead gets the address from the corresponding vector that
is held in RAM. Normally this would be the address of the standard routine
held in ROM.

You can change this address by using the SWI OS_Claim (on page 8),
documented later in this chapter. RISC OS will then instead branch to your
own routine, held at the address you pass to OS_Claim.

Your own routine can do one of the following:

● replace the original routine, passing control directly back to the caller
● do some processing before calling the standard routine, which then

passes control back to the caller
● call the standard routine, process some of the results it returns, and

then pass control back to the caller.

If your routine completely replaces the standard one, it is said to intercept the
call; otherwise it is said to pass on the call.

As an example, let's look at the SWI OS_WriteC (on page 0) routine. When
RISC OS decodes a SWI with SWI number &00, it knows that you are
requesting a write character operation. RISC OS gets an address from a
vector - in this case called WrchV (on page 0) - and passes control to the
routine.

Now by default, the WrchV contains the address of the standard write
character routine in ROM. If you claim the vector using SWI OS_Claim (on
page 8), whenever an OS_WriteC is executed, your own routine will be called
first.

So far, we've deliberately been vague about how vectors store the addresses of
the routine. In fact, the vector is the head of a chain of structures, which point
to the next claimant on the vector, and to both the code and the workspace
associated with this claimant. Consequently:

● there may be more than one routine on a given vector
● no claimant has to remember what the previous owner of the vector

was
● vectors can be claimed and released by many different pieces of

software in any order, not just in a stack-like order.

The routines are called in the reverse order to the order in which they called
SWI OS_Claim (on page 8). The last routine to OS_Claim the vector will be the
first one called. If that routine passes the call on, the next most recent
claimant will get the call, and so on. If any of the routines on the vector
intercept the call, the earlier claimants will not be called.

There are some vectors which should not be intercepted; they must always be
passed on to other claimants. This is because the default owner, ie the routine
which is called if no one has claimed the vector, might perform some
important action. The error vector, ErrorV (on page 0), is a good example. The
default owner of this vector is a routine which calls the error handler. If you
intercept ErrorV, the error handler will never be called, and errors won't be

OvOvervieervieww

Claiming vectors

An example

Vector chains

When not to intercept a
vector

2 Software vectors: Overview

../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#vector_wrchv
errors.html#vector_errorv

dealt with properly.

When SWI OS_Claim (on page 8) adds a routine to a vector, it automatically
removes any identical earlier instances of the routine from the chain (ie
instances having the same pointer to code, and the same pointer to
workspace). If you don't want this to happen, use the SWI OS_AddToVector
(on page 11) instead.

Under an environment such as the desktop, multiple applications are run
concurrently. The currently running application is mapped into memory at
&8000. Desktop applications periodically return control to the Window
Manager (or Wimp) by calling the SWI Wimp_Poll (on page 0); at this point
the Wimp may decide to swap to another application. In doing so, it maps the
current application out of the application space, and maps the new
application into that space. Thus every application is given the illusion that it
is the only one in the system.

If your application has claimed a vector using a routine in its own space, it
must obviously release that vector each time it (and the claiming routine) may
be swapped out of application space. Before each call your application makes
to Wimp_Poll (which is when it may be swapped out), it must call SWI
OS_DelinkApplication (on page 12) to remove any claiming routines in
application space. When its call to Wimp_Poll returns (and hence it is
swapped back in), it must then call SWI OS_RelinkApplication (on page 13) to
reclaim those vectors.

Multiply installing the
same routine

Desktop applications

Software vectors: Overview 3

../desktop/wimp/task_scheduling.html#swi_wimp_poll

If you write a routine that uses a vector, it must obey the same entry and exit
conditions as the corresponding RISC OS routine. For example, a routine on
WrchV (on page 0) must preserve all registers, just as the SWI OS_WriteC (on
page 0) does.

If you pass the call on, you can deliberately alter some of the registers to
change the effect of the call. However, if you do so, you must arrange for
control to return again to your routine. You must then restore the register
values that the old routine would normally have returned, before finally
returning control to the calling program. This is because some applications
might rely on the returned values being those documented in this manual.

The processor mode in which the routine is entered depends on the vector:

● Routines vectored through IrqV (on page 15) are always executed in
IRQ mode.

● Routines vectored through Vectors &10 to &16 (EventV (on page 0),
InsV (on page 16), KeyV (on page 0), RemV (on page 20), CnpV (on page
25)) and TickerV (on page 28) are generally executed in IRQ mode, but
may be executed in SVC mode if called using SWI OS_CallAVector (on
page 10), and in certain other unspecified circumstances.

● All other routines are executed in SVC mode – the mode entered when
the SWI instruction is executed.

Note that if you call a SWI from a routine that is in SVC mode, you will
corrupt the return address held in R14. Consequently, your routine should use
the full, descending stack addressed by R13 to save R14 first. See the section
entitled Important notes (on page 0) for a more complete explanation of this.

If your routine will be entered in IRQ mode there are other restrictions. These
are detailed in full in the Restrictions (on page 0).

Routines using most of the vectors can return errors by setting the V flag, and
storing an error pointer in R0. The routine must not pass on the call, as one of
the parameters (R0) has been changed; this would cause problems for the
next routine on the vector. The routine must instead intercept the call,
returning control back to the calling program.

You can't do this with all the vectors; some of them (those involving IRQ calls
in particular) have nowhere to send the error to.

You should use one of two methods to return from a vectored routine. These
are described immediately below; for an example, see the example program
(on page 32).

If you wish to pass on the call (to the previous owner), you should return by
copying R14 into the PC. Use the instruction:

MOVS PC,R14

If you wish to intercept the call, you should pull an exit address (which has
been set up by RISC OS) from the stack and jump to it. Use the instruction:

LDMFD R13!,{PC}

Control will return to the caller of the vector.

Sometimes, you may want to do more complex things with a vector, such as:

TTechnical deechnical detailstails

Use of registers

Processor modes

SVC mode

IRQ mode

Returning errors

Returning from a
vectored routine

Passing on the call

Intercepting the call

More complex uses of
vectors

4 Software vectors: Technical details

../kernel/io/charoutput.html#vector_wrchv
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#swi_os_writec
events.html#vector_eventv
../hardware/keyboard.html#vector_keyv
swi.html#subsection_important_notes
interrupthandling.html#subsection_restrictions

● preprocessing registers to alter the effect of a standard routine
● postprocessing to change the effect of future calls
● repeatedly calling a routine or group of routines.

There are a number of important things to remember if you are doing so. You
must make sure that:

● the vector still looks exactly the same to a program that is calling it,
even if it now does different things

● your routine will cope with being called in all the processor modes that
its vector uses (for example, SVC or IRQ mode for a routine on InsV (on
page 16))

● the values of R10 and R11 are preserved when earlier claimants of the
vector are repeatedly called.

In most cases, the interrupt status is given as undefined. This is because the
vectors may be called either by the SWI(s) which normally use them, many of
which ensure a given interrupt status, or by SWI OS_CallAVector (on page 10),
which does not alter the interrupt status.

The software vectors are listed below. The names of the routines which can
cause each vector to be called are in brackets:

Vector defintions

List of software vectors

Software vectors: Technical details 5

NumberNumber VVectorector DescriptionDescription

&00 UserV User vector (on page 14) is reserved and
must not be used

&01 ErrorV Error vector (on page 0) (SWI
OS_GenerateError (on page 0))

&02 IrqV Unknown interrupt vector (on page 15)

&03 WrchV Write character vector (on page 0) (SWI
OS_WriteC (on page 0))

&04 RdchV Read character vector (on page 0) (SWI
OS_ReadC (on page 0))

&05 CLIV Command line interpreter vector (on page
0) (SWI OS_CLI (on page 0))

&06 ByteV OS_Byte indirection vector (on page 0)
(SWI OS_Byte (on page 0))

&07 WordV OS_Word indirection vector (on page 0)
(SWI OS_Word (on page 0))

&08 FileV File read/write vector (on page 0) (SWI
OS_File (on page 0))

&09 ArgsV File arguments read/write vector (on page
0) (SWI OS_Args (on page 0))

&0A BGetV File byte read vector (on page 0) (SWI
OS_BGet (on page 0))

&0B BPutV File byte put vector (on page 0) (SWI
OS_BPut (on page 0))

&0C GBPBV File byte block get/put vector (on page 0)
(SWI OS_GBPB (on page 0))

&0D FindV File open vector (on page 0) (SWI OS_Find
(on page 0))

&0E ReadLineV Read a line of text vector (on page 0) (SWI
OS_ReadLine (on page 0))

&0F FSCV Filing system control vector (on page 0)
(SWI OS_FSControl (on page 0))

&10 EventV Event vector (on page 0) (SWI
OS_GenerateEvent (on page 0))

&11 RReserveserveded

&12 RReserveserveded

&13 KeyV Key vector (on page 0)

&14 InsV Buffer insert vector (on page 16) (SWI
OS_Byte 138 (on page 0))

&15 RemV Buffer remove vector (on page 20) (SWI
OS_Byte 145 (on page 0))

&16 CnpV Count/Flush Buffer vector (on page 25)
(SWI OS_Byte 21 (on page 0) & SWI
OS_Byte 152 (on page 0))

&17 UKVDU23V Unknown VDU23 vector (on page 0) (SWI
OS_WriteC (on page 0))

&18 UKSWIV Unknown SWI vector (on page 27)

&19 UKPLOTV Unknown VDU25 vector (on page 0) (SWI
OS_Plot (on page 0))

&1A MouseV Mouse vector (on page 0) (SWI OS_Mouse

6 Software vectors: Technical details

errors.html#vector_errorv
errors.html#swi_os_generateerror
errors.html#swi_os_generateerror
../kernel/io/charoutput.html#vector_wrchv
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charinput.html#vector_rdchv
../kernel/io/charinput.html#swi_os_readc
../kernel/io/charinput.html#swi_os_readc
../programmers/cli/cli.html#vector_cliv
../programmers/cli/cli.html#vector_cliv
../programmers/cli/cli.html#swi_os_cli
osbyte.html#vector_bytev
osbyte.html#swi_os_byte
osword.html#vector_wordv
osword.html#swi_os_word
../filesystems/fileswitch.html#vector_filev
../filesystems/fileswitch.html#swi_os_file
../filesystems/fileswitch.html#swi_os_file
../filesystems/fileswitch.html#vector_argsv
../filesystems/fileswitch.html#vector_argsv
../filesystems/fileswitch.html#swi_os_args
../filesystems/fileswitch.html#vector_bgetv
../filesystems/fileswitch.html#swi_os_bget
../filesystems/fileswitch.html#swi_os_bget
../filesystems/fileswitch.html#vector_bputv
../filesystems/fileswitch.html#swi_os_bput
../filesystems/fileswitch.html#swi_os_bput
../filesystems/fileswitch.html#vector_gbpbv
../filesystems/fileswitch.html#swi_os_gbpb
../filesystems/fileswitch.html#vector_findv
../filesystems/fileswitch.html#swi_os_find
../filesystems/fileswitch.html#swi_os_find
../kernel/io/charinput.html#vector_readlinev
../kernel/io/charinput.html#swi_os_readline
../kernel/io/charinput.html#swi_os_readline
../filesystems/fileswitch.html#vector_fscv
../filesystems/fileswitch.html#swi_os_fscontrol
events.html#vector_eventv
events.html#swi_os_generateevent
events.html#swi_os_generateevent
../hardware/keyboard.html#vector_keyv
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-152
buffers.html#swi_os_byte-152
../graphics/vdudrivers.html#vector_ukvdu23v
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#swi_os_writec
../graphics/vdudrivers.html#vector_ukplotv
../graphics/vdudrivers.html#swi_os_plot
../graphics/vdudrivers.html#swi_os_plot
../graphics/vdudrivers.html#vector_mousev
../graphics/vdudrivers.html#swi_os_mouse

NumberNumber VVectorector DescriptionDescription

(on page 0))

&1B VDUXV VDU vector (on page 0) (SWI OS_WriteC
(on page 0))

&1C TickerV 100Hz vector (on page 28)

&1D UpcallV Warning vector (on page 0) (SWI
OS_UpCall (on page 0))

&1E ChangeEnvironmentV Environment change vector (on page 0)
(SWI OS_ChangeEnvironment (on page
0))

&1F SpriteV Sprite indirection vector (on page 0) (SWI
OS_SpriteOp (on page 0))

&20 DrawV Draw SWI vector (on page 29) (all Draw
(on page 0) SWI calls)

&21 EconetV Econet activity vector (on page 30) (all
Econet (on page 0) SWI calls)

&22 ColourV ColourTrans SWI vector (on page 0) (all
ColourTrans (on page 0) SWI calls)

&23 PaletteV Read/write palette vector (on page 0)

&24 SerialV OS_SerialOp indirection vector (on page
0) (SWI OS_SerialOp (on page 0))

&25 FontV Font manager

&26 PointerV Mouse drivers (on page 0)

&27 TimeShareV SkyNet

&28 LowPriorityEventV For future expansion

&29 FastTickerV Like TickerV, but faster (RISCOS Ltd)

&2A GraphicsV Graphics hardware abstraction

&2B UnthreadV High-priority callbacks

&2C VideoV Graphics abstraction (RISCOS Ltd)

&2D SeriousErrorV Handling of “serious errors” and
exceptions

&3E NVRAMV NVRAM hardware abstraction (RISCOS
Ltd)

&3F RTCV RTC hardware abstraction (RISCOS Ltd)

All other vectors are currently reserved.

Many of the vectors are by default used to indirect calls of SWIs, and so the
routine they call is the same as that the SWI calls.

Note that the filing system vectors FileV (Vector &08) to FindV (Vector &0D)
have 'no default action', ie they return immediately. However, the FileSwitch
(on page 0) module SWI OS_Claim (on page 8)s the vectors whenever the
machine is reset, so effectively the default action is to perform the
appropriate filing system routine.

Vectors are freed on any kind of reset, and system extension modules must
claim them again if they need to - just as FileSwitch does.

Additional information on
software vectors

About the filing
system vectors

Other vectors and
resets

Software vectors: Technical details 7

../graphics/vdudrivers.html#swi_os_mouse
../graphics/vdudrivers.html#vector_vduxv
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#swi_os_writec
communications.html#vector_upcallv
communications.html#swi_os_upcall
communications.html#swi_os_upcall
../kernel/progenv/progenv_handlers.html#vector_changeenvironmentv
../kernel/progenv/progenv_handlers.html#swi_os_changeenvironment
../kernel/progenv/progenv_handlers.html#swi_os_changeenvironment
../graphics/sprites.html#vector_spritev
../graphics/sprites.html#swi_os_spriteop
../graphics/sprites.html#swi_os_spriteop
../graphics/draw.html#section_swi_calls
../graphics/draw.html#section_swi_calls
../networking/legacy/econet.html#section_swi_calls
../graphics/colourtrans.html#vector_colourv
../graphics/colourtrans.html#section_swi_calls
../graphics/palettevector.html#vector_palettev
../hardware/serialdevice.html#vector_serialv
../hardware/serialdevice.html#vector_serialv
../hardware/serialdevice.html#swi_os_serialop
../hardware/mouse.html#vector_pointerv
../filesystems/fileswitch.html#chapter_fileswitch
../filesystems/fileswitch.html#chapter_fileswitch

OS_Claim
(SWI &1F)

Adds a routine to the list of those that claim a vector

R0 = vector number (see List of software vectors (on page 5))
R1 = address of claiming routine that is to be added to vector
R2 = value to be passed in R12 when the routine is called

R0 preserved
R1 preserved
R2 preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call adds the routine whose address is given in R1 to the list of routines
claiming the vector. This becomes the first routine to be used when the vector
is called.

Any identical earlier instances of the routine are removed. Routines are
defined to be identical if the values passed in R0, R1 and R2 are identical.

The R2 value enables the routine to have a workspace pointer set up in R12
when it is called. If the routine using the vector is in a module (as will often be
the case), this pointer will usually be the same as its module workspace
pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

MOV R0, #ByteV
ADR R1, MyByteHandler
MOV R2, #0
SWI "OS_Claim"

SWI OS_Release (on page 9)
SWI OS_CallAVector (on page 10)
SWI OS_AddToVector (on page 11)

SSWI CallsWI Calls

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Examples

Related SWIs

8 Software vectors: SWI Calls

OS_Release
(SWI &20)

Removes a routine from the list of those that claim a vector

R0 = vector number (see List of software vectors (on page 5))
R1 = address of routine that is to be released from vector
R2 = value given in R2 when claimed

R0 preserved
R1 preserved
R2 preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call removes the routine, which is identified by both its address and
workspace pointer, from the list for the specified vector. The routine will no
longer be called. If more than one copy of the routine is claiming the vector,
only the first one to be called is removed.

Note that this SWI cannot be re-entered as it disables IRQs.

MOV R0, #ByteV
ADR R1, MyByteHandler
MOV R2, #0
SWI "OS_Release"

SWI OS_Claim (on page 8)
SWI OS_CallAVector (on page 10)
SWI OS_AddToVector (on page 11)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Examples

Related SWIs

Software vectors: SWI Calls 9

OS_CallAVector
(SWI &34)

Calls a vector directly

R0 - R8 = vector routine parameters
R9 = vector number (see List of software vectors (on page 5))

R0 - R9 = depends on vector called
C flag flag pass to vector
V flag flag pass to vector

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

OS_CallAVector calls the vector number given in R9. R0 - R8 are parameters
to the vectored routine; see the descriptions below for details.

This is used for calling vectored routines which don't have any other entry
point, such as some calls to RemV (on page 20) or CnpV (on page 25). It is also
used by system extensions such as the Draw module (on page 0), ColourTrans
(on page 0) and Econet (on page 0) modules to call their corresponding
vectors.

You must not use this SWI to call ByteV (on page 0) and other such vectors, as
the vector handlers expect entry conditions you may not provide.

Note that although this SWI is re-entrant, the vectors that it calls may not be.

SWI OS_Claim (on page 8)
SWI OS_Release (on page 9)
SWI OS_AddToVector (on page 11)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

10 Software vectors: SWI Calls

../graphics/draw.html#chapter_draw_module
../graphics/colourtrans.html#chapter_colourtrans
../graphics/colourtrans.html#chapter_colourtrans
../networking/legacy/econet.html#chapter_econet
osbyte.html#vector_bytev

OS_AddToVector
(SWI &47)

Adds a routine to the list of those that claim a vector

R0 = vector number (see List of software vectors (on page 5))
R1 = address of claiming routine
R2 = value to be passed in R12 when the routine is called

R0 preserved
R1 preserved
R2 preserved

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

This call adds the routine whose address is given in R1 to the list of routines
claiming the vector. This becomes the first routine to be used when the vector
is called.

Unlike SWI OS_Claim (on page 8), any earlier instances of the same routine
remain on the vector chain.

The R2 value enables the routine to have a workspace pointer set up in R12
when it is called. If the routine using the vector is in a module (as will often be
the case), this pointer will usually be the same as its module workspace
pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

SWI OS_Claim (on page 8)
SWI OS_Release (on page 9)
SWI OS_CallAVector (on page 10)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Software vectors: SWI Calls 11

OS_DelinkApplication
(SWI &4D)

Remove any vectors that an application is using

R0 = pointer to buffer
R1 = buffer size in bytes

R0 preserved
R1 = number of bytes left in buffer

Interrupts are disabled
Fast interrupts are enabled

Processor is in SVC mode

SWI is not re-entrant

When an application running in application space (at &8000) is going to be
swapped out, it must remove all vectors that it uses. Otherwise, if they were
activated, they would jump into whatever happened to be at that location in
the new application running in that space.

R0 on entry points to a buffer. This is used to store details of the vectors used,
so that they can be restored afterwards. Each vector requires 12 bytes of
storage and the list is terminated by a single byte.

If the space left returned in R1 is zero, then you must allocate another buffer
and repeat the call; the buffer you have contains valid information. When you
relink you must pass all the buffers returned by this call.

Note that this SWI cannot be re-entered as it disables IRQs.

SWI OS_RelinkApplication (on page 13)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

12 Software vectors: SWI Calls

OS_RelinkApplication
(SWI &4E)

Restore from a buffer any vectors that an application is using

R0 = pointer to buffer

R0 preserved

Interrupts are not altered
Fast interrupts are enabled

Processor is in SVC mode

SWI is re-entrant

When an application is going to be swapped in, all vectors that it uses must be
restored. R0 on entry points to a buffer, which has previously been created by
SWI OS_DelinkApplication (on page 12).

SWI OS_DelinkApplication (on page 12)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Software vectors: SWI Calls 13

Vector UserV
(Vector &00)

Reserved vector

None

None

Interrupts are undefined
Fast interrupts are undefined

Processor is in undefined mode

Not defined

UserV is a reserved vector, and you must not use it. Its default action is to do
nothing.

None

SoSoftwftwarare ve vectectorsors

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related APIs

14 Software vectors: Software vectors

Vector IrqV
(Vector &02)

Called when an unknown IRQ is detected

None

None

Interrupts are disabled
Fast interrupts are enabled

Processor is in irq mode

Vector is not re-entrant

This vector is called when an unknown IRQ is detected.

It was provided in the Arthur operating system so you could add interrupt
generating devices of your own to the computer. RISC OS provides a new
method of doing so that is more efficient, which you should use in preference.
This vector has been kept for compatibility.

The default action is to disable the interrupt generating device by masking it
out in the IOC chip.

Routines that claim this vector must not corrupt any registers. You must not
call this vector using SWI OS_CallAVector (on page 10).

You must intercept calls to this vector and service the interrupt if the device is
yours. You must pass them on to earlier claimants if the device is not yours, so
that interrupt handlers written to run under Arthur can still trap interrupts
they recognise.

Old software that handled Sound interrupts using this vector will no longer
work, as the new Sound module exclusively uses the RISC OS SoundIRQ
device handler.

See the chapter entitled Interrupts and handling them (on page 0) for details
of how to add interrupt generating devices to your computer, and the chapter
entitled Handlers (on page 0) for more about handlers.

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related APIs

Software vectors: Software vectors 15

interrupthandling.html#chapter_interrupts_and_handling_them
../kernel/progenv/progenv_handlers.html#chapter_handlers

Vector InsV
(Vector &14)

Called to place a byte or block in a buffer

R1 = operation flag:
Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Clear: Insert a byte in a buffer (on page 17)

Set: Insert a block in a buffer (on page 18)

R1 preserved
C flag flag = 1 implies insertion failed

Interrupts are undefined
Fast interrupts are enabled

Processor is in IRQ or SVC mode

Vector is not re-entrant

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on
page 0). The default action is to call the ROM routine to insert byte(s) into a
buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 10). It must be called
with interrupts disabled (the OS_Bytes do this automatically), therefore code
on the vector can only be entered with interrupts disabled and is not re-
entrant.

The C flag is used to indicate if the insertion failed; if C=1 then it was not
possible to insert all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for
buffers that are not handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide
handlers for all of InsV (on page 16), RemV (on page 20) and CnpV (on page
25). Under later versions of RISC OS you must instead use the buffer manager
SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled
Buffer manager (on page 0).

SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 10)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

16 Software vectors: Software vectors

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector InsV 0
InsertByteInBuffer

(Vector &14)
Insert a byte in a buffer

R0 = byte to be inserted
R1 = operation flag:

Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Clear: Byte insertion

R0 preserved
R1 preserved
R2 corrupted

C flag flag:
VValuealue MeaningMeaning

1 Insertion failed

Interrupts are undefined
Fast interrupts are enabled

Processor is in IRQ or SVC mode

Vector is not re-entrant

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on
page 0). The default action is to call the ROM routine to insert byte(s) into a
buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 10). It must be called
with interrupts disabled (the OS_Bytes do this automatically), therefore code
on the vector can only be entered with interrupts disabled and is not re-
entrant.

The C flag is used to indicate if the insertion failed; if C=1 then it was not
possible to insert all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for
buffers that are not handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide
handlers for all of InsV (on page 16), RemV (on page 20) and CnpV (on page
25). Under later versions of RISC OS you must instead use the buffer manager
SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled
Buffer manager (on page 0).

SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 10)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

InsV (on page 16)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Related vectors

Software vectors: Software vectors 17

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector InsV 1
InsertBlockInBuffer

(Vector &14)
Insert a block in a buffer

R1 = operation flag:
Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Set: Block insertion
R2 = pointer to first byte of data to be inserted
R3 = number of bytes to insert

R0 preserved
R1 preserved
R2 = pointer to remaining data to be inserted
R3 = number of bytes still to be inserted

C flag flag:
VValuealue MeaningMeaning

1 Insertion failed

Interrupts are undefined
Fast interrupts are enabled

Processor is in IRQ or SVC mode

Vector is not re-entrant

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on
page 0). The default action is to call the ROM routine to insert byte(s) into a
buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 10). It must be called
with interrupts disabled (the OS_Bytes do this automatically), therefore code
on the vector can only be entered with interrupts disabled and is not re-
entrant.

The C flag is used to indicate if the insertion failed; if C=1 then it was not
possible to insert all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for
buffers that are not handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide
handlers for all of InsV (on page 16), RemV (on page 20) and CnpV (on page
25). Under later versions of RISC OS you must instead use the buffer manager
SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled
Buffer manager (on page 0).

SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 10)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

18 Software vectors: Software vectors

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

InsV (on page 16)Related vectors

Software vectors: Software vectors 19

Vector RemV
(Vector &15)

Called to remove a byte or block from a buffer

R1 = operation flag:
Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Clear: Remove a byte from a buffer (on page 21)

Set: Remove a block from a buffer (on page 23)
V flag flag:

VValuealue MeaningMeaning

0 Data should be removed

1 Buffer to be examined only

R1 preserved

Interrupts are undefined
Fast interrupts are enabled

Processor is in IRQ or SVC mode

Vector is not re-entrant

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152
(on page 0). The default action is to call the ROM routine to examine or
remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 10). It must be called
with interrupts disabled (the OS_Bytes do this automatically), therefore code
on the vector can only be entered with interrupts disabled and is not re-
entrant.

The C flag is used to indicate if the operation failed; if C=1 then it was not
possible to remove/examine all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for
buffers that are not handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide
handlers for all of InsV, RemV and CnpV. Under later versions of RISC OS you
must instead use the buffer manager SWIs SWI Buffer_Create (on page 0) or
SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled
Buffer manager (on page 0)

SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 10)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

20 Software vectors: Software vectors

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector RemV 0
RemoveByteFromBuffer

(Vector &15)
Remove a byte from a buffer

R1 = operation flag:
Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Clear: Byte removal
V flag flag:

VValuealue MeaningMeaning

0 Data should be removed

1 Buffer to be examined only

R0 = next byte to be removed (examine option), or corrupted (remove
option)

R1 preserved
R2 = byte removed (remove option), or corrupted (examine option)

C
flag

flag:
VValuealue MeaningMeaning

1 Buffer was empty on entry

Interrupts are undefined
Fast interrupts are enabled

Processor is in IRQ or SVC mode

Vector is not re-entrant

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152
(on page 0). The default action is to call the ROM routine to examine or
remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 10). It must be called
with interrupts disabled (the OS_Bytes do this automatically), therefore code
on the vector can only be entered with interrupts disabled and is not re-
entrant.

The C flag is used to indicate if the operation failed; if C=1 then it was not
possible to remove/examine all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for
buffers that are not handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide
handlers for all of InsV, RemV and CnpV. Under later versions of RISC OS you
must instead use the buffer manager SWIs SWI Buffer_Create (on page 0) or
SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled
Buffer manager (on page 0)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Software vectors: Software vectors 21

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager

SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 10)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

RemV (on page 20)

Related SWIs

Related vectors

22 Software vectors: Software vectors

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector RemV 1
RemoveBlockFromBuffer

(Vector &15)
Remove a block from a buffer

R1 = operation flag:
Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Set: Block removal
R2 = pointer to block to be filled
R3 = number of bytes to place into block

V flag flag:
VValuealue MeaningMeaning

0 Data should be removed

1 Buffer to be examined only

R0 preserved
R1 preserved
R2 = pointer to updated buffer position
R3 = number of bytes still to be removed

C flag flag:
VValuealue MeaningMeaning

1 Buffer was empty on entry

Interrupts are undefined
Fast interrupts are enabled

Processor is in IRQ or SVC mode

Vector is not re-entrant

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152
(on page 0). The default action is to call the ROM routine to examine or
remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 10). It must be called
with interrupts disabled (the OS_Bytes do this automatically), therefore code
on the vector can only be entered with interrupts disabled and is not re-
entrant.

The C flag is used to indicate if the operation failed; if C=1 then it was not
possible to remove/examine all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for
buffers that are not handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide
handlers for all of InsV, RemV and CnpV. Under later versions of RISC OS you
must instead use the buffer manager SWIs SWI Buffer_Create (on page 0) or
SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled
Buffer manager (on page 0)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Software vectors: Software vectors 23

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager

SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 10)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

RemV (on page 20)

Related SWIs

Related vectors

24 Software vectors: Software vectors

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector CnpV
(Vector &16)

Called to count the number of entries/amount of space left in a buffer, or to
flush the contents of a buffer

R1 = buffer number
The V flag and C flag encode the operation required

R0 corrupted
R1 = count (LSB):

Bit(s)Bit(s) MeaningMeaning

0-7 Least significant 8 bits of count, if V flag = 0 on entry; else
preserved

R2 = count (MSB):
Bit(s)Bit(s) MeaningMeaning

0-23 Most significant 24 bits of count, if V flag = 0 on entry; else
preserved

Interrupts are undefined
Fast interrupts are enabled

Processor is in IRQ or SVC mode

Vector is not re-entrant

This vector is called by SWI OS_Byte 15 (on page 0), SWI OS_Byte 21 (on page
0) and SWI OS_Byte 128 (on page 0). The default action is to call the ROM
routine to count the number of entries in a buffer, or to flush the contents of a
buffer.

It may also be called using SWI OS_CallAVector (on page 10). It must be called
with interrupts disabled (the OS_Bytes do this automatically), therefore code
on the vector can only be entered with interrupts disabled and is not re-
entrant.

This vector can be entered in either IRQ or SVC mode.

The V flag gives a reason code that determines the operation:

VValuealue MeaningMeaning

0 count the entries in a buffer

1 flush the buffer

If the entries are to be counted then the result returned depends on the C flag
on entry as follows:

VValuealue MeaningMeaning

0 return the number of entries in the buffer

1 return the amount of space left in the buffer

This call also copes with buffer manager buffers.

To use different sized system buffers under RISC OS 2, you must provide
handlers for all of InsV, RemV and CnpV. Under later versions of RISC OS you
must instead use the buffer manager SWIs SWI Buffer_Create (on page 0) or
SWI Buffer_Register (on page 0).

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Software vectors: Software vectors 25

buffers.html#swi_os_byte-15
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-128
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

See also the chapter entitled Buffers (on page 0), and the chapter entitled
Buffer manager (on page 0)

SWI OS_Byte 15 (on page 0)
SWI OS_Byte 21 (on page 0)
SWI OS_Byte 128 (on page 0)
SWI OS_CallAVector (on page 10)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

Related SWIs

26 Software vectors: Software vectors

buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-15
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-128
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector UKSWIV
(Vector &18)

Called when an unknown SWI instruction is issued

R0 - R8 = as set up by the caller
R11 = SWI number

None

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This vector is called when a SWI is issued with an unknown SWI number.
Before this vector is called, the OS tries to pass the call to any modules which
have SWI table entries in their header.

The default action is to call the Unused SWI handler, which by default returns
a ‘No such SWI’ error. See the section entitled Unused SWI (on page 0) for full
details.

This vector can be used to add large numbers of SWIs to the system from a
single module. Normally only 64 SWIs can be added by a module; if you claim
this vector, you can then trap any additional SWIs you wish to add. (You
should always use the module mechanism to add the first 64 SWIs that a
module adds, as it is more efficient than using this vector.) Note that you must
get an allocation of SWI numbers from RISC OS Open before adding any to
commercially available software. This will avoid clashes between your own
software and other software.

See also the chapter entitled An introduction to SWIs (on page 0); and the
chapter entitled Handlers (on page 0) for more about handlers.

SWI OS_UnusedSWI (on page 0)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Software vectors: Software vectors 27

../kernel/progenv/progenv_handlers.html#subsubsection_unused_swi
https://www.riscosopen.org/content/allocate#link_allocation
swi.html#chapter_an_introduction_to_swis
../kernel/progenv/progenv_handlers.html#chapter_handlers
../kernel/progenv/progenv_handlers.html#swi_os_unusedswi

Vector TickerV
(Vector &1C)

Called every centisecond

None

None

Interrupts are disabled
Fast interrupts are enabled

Processor is in IRQ or SVC mode

Not defined

This vector is called every centisecond. It must never be intercepted, as this
would prevent other clients from being called.

Routines that take a long time (say > 100μs) may re-enable IRQ so long as they
disable it again before passing the call on. If you do so, other calls may be
made to TickerV in the meantime. Your routine needs to prevent or cope with
re-entrancy. One way of ensuring that the code is single threaded is:

● to use a flag in its workspace to note that it is currently threaded, and:
● to keep a count of how many calls to TickerV have been missed while it

was threaded, so the count can be examined on exit and corrected for.

None

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related APIs

28 Software vectors: Software vectors

Vector DrawV
(Vector &20)

Used to indirect all SWI calls made to the Draw module

R0 - R7 = depends on SWI issued
R8 = index of SWI within the Draw module SWI chunk:

IndexIndex Decoded as SDecoded as SWI CalWI Calll

0 SWI Draw_ProcessPath (on page 0)

2 SWI Draw_Fill (on page 0)

4 SWI Draw_Stroke (on page 0)

6 SWI Draw_StrokePath (on page 0)

8 SWI Draw_FlattenPath (on page 0)

10 SWI Draw_TransformPath (on page 0)

R0 - R10 = depends on SWI issued

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

This vector is used to indirect all SWI calls made to the Draw module. The
default action is to call the ROM routine in the Draw module that decodes and
executes SWIs.

See also the chapter entitled Draw module (on page 0)

SWI Draw_ProcessPath (on page 0)
SWI Draw_Fill (on page 0)
SWI Draw_Stroke (on page 0)
SWI Draw_StrokePath (on page 0)
SWI Draw_FlattenPath (on page 0)
SWI Draw_TransformPath (on page 0)

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

Related SWIs

Software vectors: Software vectors 29

../graphics/draw.html#swi_draw_processpath
../graphics/draw.html#swi_draw_fill
../graphics/draw.html#swi_draw_stroke
../graphics/draw.html#swi_draw_strokepath
../graphics/draw.html#swi_draw_flattenpath
../graphics/draw.html#swi_draw_transformpath
../graphics/draw.html#chapter_draw_module
../graphics/draw.html#swi_draw_processpath
../graphics/draw.html#swi_draw_fill
../graphics/draw.html#swi_draw_stroke
../graphics/draw.html#swi_draw_strokepath
../graphics/draw.html#swi_draw_flattenpath
../graphics/draw.html#swi_draw_transformpath

Vector EconetV
(Vector &21)

Called whenever there is activity on the Econet

R0 = reason code (see below)
R1 = total size of data, or amount of data transferred, or no parameter passed

R0 preserved
R1 preserved

Interrupts are undefined
Fast interrupts are enabled

Processor is in SVC mode

Not defined

EconetV is called whenever there is activity on the Econet. The reason code
tells you what the activity is.

The bottom nibble of the reason code indicates whether the activity has
started (0), is part way through (1) or finished (2). The next nibble gives the
type of operation.

The table below shows the reason codes that are passed. The middle (and
headless) column shows what is passed in R1, or (for the less obvious cases)
when the reason code is passed:

On entry

On exit

Interrupts

Processor mode

Re-entrancy

Use

30 Software vectors: Software vectors

RReasoneason
codecode

AActivityctivity

&10 R1 = total size of data NetFS_StartLoad

&11 R1 = amount of data transferred NetFS_PartLoad

&12 NetFS_FinishLoad

&20 R1 = total size of data NetFS_StartSave

&21 R1 = amount of data transferred NetFS_PartSave

&22 NetFS_FinishSave

&30 R1 = total size of data NetFS_StartCreate

&31 R1 = amount of data transferred NetFS_PartCreate

&32 NetFS_FinishCreate

&40 R1 = total size of data NetFS_StartGetBytes

&41 R1 = amount of data transferred NetFS_PartGetBytes

&42 NetFS_FinishGetBytes

&50 R1 = total size of data NetFS_StartPutBytes

&51 R1 = amount of data transferred NetFS_PartPutBytes

&52 NetFS_FinishPutBytes

&60 start of a Broadcast_Wait NetFS_StartWait

&62 end of a Broadcast_Wait NetFS_FinishWait

&70 R1 = total size of data NetFS_StartBroadcastLoad

&71 R1 = amount of data transferred NetFS_PartBroadcastLoad

&72 NetFS_FinishBroadcastLoad

&80 R1 = total size of data NetFS_StartBroadcastSave>

&81 R1 = amount of data transferred NetFS_PartBroadcastSave

&82 NetFS_FinishBroadcastSave

&C0 start to wait for a transmission to
end

Econet_StartTransmission

&C2 DoTransmit returns Econet_FinishTransmission

&D0 start to wait for a reception to
end

Econet_StartReception

&D2 WaitForReception returns Econet_FinishReception

This vector is normally claimed by the NetStatus module, which uses the
Hourglass module to display an hourglass while the Econet is busy. It passes
on the call. If the Hourglass module is disabled, the default action is to do
nothing. See the chapter entitled Hourglass (on page 0), and the chapter
entitled NetStatus (on page 0).

See also the chapter entitled NetFS (on page 0), the chapter entitled NetPrint
(on page 0), and the chapter entitled Econet (on page 0).

NoneRelated APIs

Software vectors: Software vectors 31

../graphics/hourglass.html#chapter_hourglass
../networking/legacy/netstatus.html#chapter_netstatus
../filesystems/netfs.html#chapter_netfs
../filesystems/netprint.html#chapter_netprint
../filesystems/netprint.html#chapter_netprint
../networking/legacy/econet.html#chapter_econet

The example program below illustrates all these important points. You can
adapt it to write your own routines.

The program claims WrchV (on page 0), adding a routine that:

● changes the case of the character depending on the state of a flag
(preprocessing)

● calls the remaining routines on the vector to write the altered character
● toggles the flag (postprocessing)
● ensures that all registers are set to the values that would be returned by

the default write character routine
● returns control to the calling program.

Note that the program releases the vector before ending, even if an error
occurs.

DIM code% 100
FOR pass%=0 TO 3 STEP 3
P%=code%
[OPT pass%
.vectorcode%
; save the entry value, the necessary state for the repeated call,
; and our workspace pointer
STMFD r13!, {r0, r10-r12, r14}

; do our preprocessing; as a trivial example, convert to the current case
LDRB r14, [r12] ; pick up upper/lowercase flag
CMP r14, #0 ; decide which territory manager
table to use
LDREQ r1, lowercase_table%
LDRNE r1, uppercase_table%
LDRB r0, [r1, r0] ; look up character and put back in
r0

; now do the call to the rest of the vector. Since this is WrchV, we know
that
; we are in SVC mode; however, the code below will correctly call the
rest of
; the vector whatever the mode.

STMFD r13!, {r15} ; pushes PC+12, complete with flags
and mode
ADD r12, r13, #8 ; stack contains
pc,r0,r10,r11,r12,r14

; so point at the stacked r10
LDMIA r12, {r10-r12, r15} ; and restore the state needed to
call the

; rest of the chain (r10 and r11),
and

; “return” to the non-vector claiming
address.

; The load of r12 wastes one cycle.

; we are now at the pc+12 that we stacked; this is therefore where the
; rest of the vector returns to when it has finished.

LDR r12, [r13, #12] ; reload our workspace pointer
; Note that the offset of #12 - and

the earlier
; #8 when we pushed onto the stack -

refer to
; this example only and are not

general
; Note also that the pc we pushed was
; pulled by the vector claimer.

ExExamplesamples

An example program

32 Software vectors: Examples

../kernel/io/charoutput.html#vector_wrchv

; we could now do some more processing, set r0 up to another character,
; and loop round to done_preprocess% again; instead, we’ll just do some
; example postprocessing; we’ll toggle our upper/lowercase flag.

LDRB r14, [r12]
EOR r14, r14, #1
STRB r14, [r12]

; now return; if there was no error then intercept the call to the
; vector, returning the original character.

LDMVCFD r13!, {r0, r10-r12, r14, r15}

; could pass the call on instead by omitting r14 from the addresses
; to pull - ie use LDMVCFD r13!, {r0, r10-r12, r15}
; there was an error; set up the correct error pointer, flags, and
; claim the vector.

STR r0, [r13] ; save the error pointer
LDMFD r13!, {r0, r10-r12, r14, r15} ; return with V still set, and claim
the vector

; reserve space to store the addresses of the territory manager case
tables
.lowercase_table%
EQUD 0
.uppercase_table%
EQUD 0
]
NEXT

REM Get addresses of the territory manager case tables
SYS “Territory_LowerCaseTable”,-1 TO !lowercase_table%
SYS “Territory_UpperCaseTable”,-1 TO !uppercase_table%
DIM flag% 1
?flag%=0
WrchV%=3
ON ERROR SYS “XOS_Release”, WrchV%, vectorcode%, flag%: PRINTREPORT$: END
SYS “OS_Claim”, WrchV%, vectorcode%, flag%
REPEAT

INPUT command$
OSCLI command$

UNTIL command$=””
SYS “XOS_Release”, WrchV%, vectorcode%, flag%
END

Software vectors: Examples 33

Maintainer(s):Maintainer(s): RISCOS Ltd <developer@riscos.com>
HistoryHistory:: RRevisionevision DDateate AuthorAuthor ChangesChanges

1 ROL Initial version
2 04 Mar 2004 ROL Filled out from original document

● Summary of vectors added.
● IrqV documented.
● ColourV linked to (in ColourTrans

documentation).
● PaletteV documented.

DDisclaimerisclaimer:: Copyright © Pace Micro Technology plc, 2001.
Portions copyright © RISCOS Ltd, 2001-2004.
Published by RISCOS Limited.
No part of this publication may be reproduced or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise,
or stored in any retrieval system of any nature, without the written
permission of the copyright holder and the publisher, application for which
shall be made to the publisher.

DocumenDocument int infformaormationtion

34 Software vectors: Document information

mailto:developer@riscos.com

	Software vectors
	Introduction
	Overview
	Claiming vectors
	An example
	Vector chains
	When not to intercept a vector
	Multiply installing the same routine
	Desktop applications

	Technical details
	Use of registers
	Processor modes
	SVC mode
	IRQ mode

	Returning errors
	Returning from a vectored routine
	Passing on the call
	Intercepting the call

	More complex uses of vectors
	Vector defintions
	List of software vectors
	Additional information on software vectors
	About the filing system vectors
	Other vectors and resets

	OS_Claim

	SWI Calls
	OS_Release
	OS_CallAVector
	OS_AddToVector
	OS_DelinkApplication
	OS_RelinkApplication
	Vector UserV

	Software vectors
	Vector IrqV
	Vector InsV
	Vector InsV 0 (InsertByteInBuffer)
	Vector InsV 1 (InsertBlockInBuffer)
	Vector RemV
	Vector RemV 0 (RemoveByteFromBuffer)
	Vector RemV 1 (RemoveBlockFromBuffer)
	Vector CnpV
	Vector UKSWIV
	Vector TickerV
	Vector DrawV
	Vector EconetV

	Examples
	An example program
	Initial version
	Filled out from original document

	Document information

