Software vectors

Introduction

We have already seen that one of the most important features of RISC OS is the ease with which it
can be altered and extended. Most of RISC OS is written as modules; these can be replaced, and
extra ones can be added.

The exception to this is the kernel, which provides the central core of functions necessary for
RISC OS to work. You cannot replace the entire kernel. Instead, you can change or replace how
certain fundamental routines of the RISC OS kernel work. You do this by using software vectors,
or vectors for short. These are held in the computer's RAM; RISC OS uses them to record where it
can find these routines.

Many of these routines perform all the functions of a given SWI. The corresponding SWI is then
known as a vectored SWI.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Overview

Overview

Claiming vectors

When you call a SWI, RISC OS uses the SWI number to decide which routine in the RISC OS
ROMs you want. For an ordinary SWI, RISC OS looks up the address of the SWI routine and then
branches to it. However, if you call a vectored SWI, it instead gets the address from the
corresponding vector that is held in RAM. Normally this would be the address of the standard
routine held in ROM.

You can change this address by using the SWI OS_Claim (on page 8), documented later in this
chapter. RISC OS will then instead branch to your own routine, held at the address you pass to

OS_Claim.

Your own routine can do one of the following:

) replace the original routine, passing control directly back to the caller

° do some processing before calling the standard routine, which then passes control back to
the caller

° call the standard routine, process some of the results it returns, and then pass control back

to the caller.

If your routine completely replaces the standard one, it is said to intercept the call; otherwise it is
said to pass on the call.

An example

As an example, let's look at the SWI OS_WriteC (on page 0) routine. When RISC OS decodes a
SWI with SWI number &00, it knows that you are requesting a write character operation.
RISC OS gets an address from a vector - in this case called WrchV (on page O) - and passes
control to the routine.

Now by default, the WrchV contains the address of the standard write character routine in ROM.
If you claim the vector using SWI OS_Claim (on page 8), whenever an OS_WriteC is executed,
your own routine will be called first.

Vector chains

So far, we've deliberately been vague about how vectors store the addresses of the routine. In fact,
the vector is the head of a chain of structures, which point to the next claimant on the vector, and
to both the code and the workspace associated with this claimant. Consequently:

° there may be more than one routine on a given vector
° no claimant has to remember what the previous owner of the vector was
° vectors can be claimed and released by many different pieces of software in any order, not

just in a stack-like order.

The routines are called in the reverse order to the order in which they called SWI OS_Claim (on
page 8). The last routine to OS_Claim the vector will be the first one called. If that routine passes
the call on, the next most recent claimant will get the call, and so on. If any of the routines on the
vector intercept the call, the earlier claimants will not be called.

../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#vector_wrchv

Software vectors

When not to intercept a vector

There are some vectors which should not be intercepted; they must always be passed on to other
claimants. This is because the default owner, ie the routine which is called if no one has claimed
the vector, might perform some important action. The error vector, ErrorV (on page 0), is a good
example. The default owner of this vector is a routine which calls the error handler. If you
intercept ErrorV, the error handler will never be called, and errors won't be dealt with properly.

Multiply installing the same routine

When SWI OS_Claim (on page 8) adds a routine to a vector, it automatically removes any
identical earlier instances of the routine from the chain (ie instances having the same pointer to
code, and the same pointer to workspace). If you don't want this to happen, use the SWI
OS_AddToVector (on page 12) instead.

Desktop applications

Under an environment such as the desktop, multiple applications are run concurrently. The
currently running application is mapped into memory at ®8000. Desktop applications
periodically return control to the Window Manager (or Wimp) by calling the SWI Wimp_Poll (on
page 0); at this point the Wimp may decide to swap to another application. In doing so, it maps
the current application out of the application space, and maps the new application into that
space. Thus every application is given the illusion that it is the only one in the system.

If your application has claimed a vector using a routine in its own space, it must obviously release
that vector each time it (and the claiming routine) may be swapped out of application space.
Before each call your application makes to Wimp_Poll (which is when it may be swapped out), it
must call SWI OS_DelinkApplication (on page 13) to remove any claiming routines in application
space. When its call to Wimp_Poll returns (and hence it is swapped back in), it must then call SWI
OS_RelinkApplication (on page 14) to reclaim those vectors.

errors.html#vector_errorv
../desktop/wimp/task_scheduling.html#swi_wimp_poll
../desktop/wimp/task_scheduling.html#swi_wimp_poll

Technical details

Technical details

Use of registers

If you write a routine that uses a vector, it must obey the same entry and exit conditions as the
corresponding RISC OS routine. For example, a routine on WrchV (on page O) must preserve all
registers, just as the SWI OS_WriteC (on page 0) does.

If you pass the call on, you can deliberately alter some of the registers to change the effect of the
call. However, if you do so, you must arrange for control to return again to your routine. You
must then restore the register values that the old routine would normally have returned, before
finally returning control to the calling program. This is because some applications might rely on
the returned values being those documented in this manual.

Processor modes

The processor mode in which the routine is entered depends on the vector:

° Routines vectored through IrqV (on page 16) are always executed in IRQ mode.

° Routines vectored through Vectors &10 to &16 (EventV (on page 0), InsV (on page 17),
KeyV (on page 0), RemV (on page 23), CnpV (on page 29)) and TickerV (on page 32) are
generally executed in IRQ mode, but may be executed in SVC mode if called using SWI
OS_CallAVector (on page 11), and in certain other unspecified circumstances.

° All other routines are executed in SVC mode - the mode entered when the SWI instruction
is executed.

SVC mode

Note that if you call a SWI from a routine that is in SVC mode, you will corrupt the return address
held in R14. Consequently, your routine should use the full, descending stack addressed by R13 to
save R14 first. See the section entitled Important notes (on page O) for a more complete
explanation of this.

IRQ mode

If your routine will be entered in IRQ mode there are other restrictions. These are detailed in full
in the Restrictions (on page 0).

Returning errors

Routines using most of the vectors can return errors by setting the V flag, and storing an error
pointer in RO. The routine must not pass on the call, as one of the parameters (RO) has been
changed; this would cause problems for the next routine on the vector. The routine must instead
intercept the call, returning control back to the calling program.

You can't do this with all the vectors; some of them (those involving IRQ calls in particular) have
nowhere to send the error to.

Returning from a vectored routine

You should use one of two methods to return from a vectored routine. These are described
immediately below; for an example, see the example program (on page 36).

../kernel/io/charoutput.html#vector_wrchv
../kernel/io/charoutput.html#swi_os_writec
events.html#vector_eventv
../hardware/keyboard.html#vector_keyv
swi.html#subsection_important_notes
interrupthandling.html#subsection_restrictions

Software vectors

Passing on the call

If you wish to pass on the call (to the previous owner), you should return by copying R14 into the
PC. Use the instruction:

MOVS PC,R14
Intercepting the call

If you wish to intercept the call, you should pull an exit address (which has been set up by
RISC OS) from the stack and jump to it. Use the instruction:

LDMFD R13!, {PC}

Control will return to the caller of the vector.
More complex uses of vectors

Sometimes, you may want to do more complex things with a vector, such as:

° preprocessing registers to alter the effect of a standard routine
° postprocessing to change the effect of future calls
° repeatedly calling a routine or group of routines.

There are a number of important things to remember if you are doing so. You must make sure

that:

° the vector still looks exactly the same to a program that is calling it, even if it now does
different things

° your routine will cope with being called in all the processor modes that its vector uses (for
example, SVC or IRQ mode for a routine on InsV (on page 17))

° the values of R10 and R11 are preserved when earlier claimants of the vector are repeatedly
called.

Vector defintions

In most cases, the interrupt status is given as undefined. This is because the vectors may be called
either by the SWI(s) which normally use them, many of which ensure a given interrupt status, or
by SWI OS_CallAVector (on page 11), which does not alter the interrupt status.

List of software vectors

The software vectors are listed below. The names of the routines which can cause each vector to
be called are in brackets:

Technical details

Number
&00
&01
02
&03

04

&05

&06

&07

&08
&09

&0A
&0B
&0C

&0D
&O0E

&OF

&10
11
12
&13
14

&15

&16

17

18
19

1A
1B
&1C
&1D
&1E

&1F

Vector
UserV
ErrorV
IrqV
WrchV

RdchV
CLIV
ByteV
WordV

FileV
ArgsV

BGetV
BPutV
GBPBV

FindV
ReadLineV

FSCV

EventV

KeyV
InsV

RemV
CnpV
UKVDU23V

UKSWIV
UKPLOTV

MouseV
VDUXV
TickerV
UpcallV

ChangeEnvironmentV

SpriteV

Description

User vector (on page 15) is reserved and must not be used
Error vector (on page 0) (SWI OS_GenerateError (on page 0))
Unknown interrupt vector (on page 16)

Write character vector (on page 0) (SWI OS_WriteC (on page
0)

Read character vector (on page 0) (SWI OS_ReadC (on page
0)

Command line interpreter vector (on page 0) (SWI OS_CLI
(on page 0))

OS_Byte indirection vector (on page 0) (SWI OS_Byte (on
page 0))

OS_Word indirection vector (on page 0) (SWI OS_Word (on
page 0))

File read/write vector (on page 0) (SWI OS_File (on page 0))
File arguments read/write vector (on page 0) (SWI OS_Args
(on page 0))

File byte read vector (on page 0) (SWI OS_BGet (on page 0))
File byte put vector (on page 0) (SWI OS_BPut (on page 0))
File byte block get/put vector (on page 0) (SWI OS_GBPB (on
page 0))

File open vector (on page 0) (SWI OS_Find (on page 0))
Read a line of text vector (on page 0) (SWI OS_ReadLine (on
page 0))

Filing system control vector (on page 0) (SWI OS_FSControl
(on page 0))

Event vector (on page 0) (SWI OS_GenerateEvent (on page 0))
Reserved

Reserved

Key vector (on page 0)

Buffer insert vector (on page 17) (SWI OS_Byte 138 (on page
0)

Buffer remove vector (on page 23) (SWI OS_Byte 145 (on page
0))

Count/Flush Buffer vector (on page 29) (SWI OS_Byte 21 (on
page 0) & SWI OS_Byte 152 (on page 0))

Unknown VDUZ23 vector (on page 0) (SWI OS_WriteC (on
page 0))
Unknown SWI vector (on page 31)

Unknown VDUZS5 vector (on page 0) (SWI OS_Plot (on page
0)

Mouse vector (on page 0) (SWI OS_Mouse (on page 0))
VDU vector (on page 0) (SWI OS_WriteC (on page 0))
100Hz vector (on page 32)

Warning vector (on page 0) (SWI OS_UpCall (on page 0))

Environment change vector (on page 0) (SWI
OS_ChangeEnvironment (on page 0))

Sprite indirection vector (on page 0) (SWI OS_SpriteOp (on

errors.html#vector_errorv
errors.html#swi_os_generateerror
../kernel/io/charoutput.html#vector_wrchv
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charinput.html#vector_rdchv
../kernel/io/charinput.html#swi_os_readc
../kernel/io/charinput.html#swi_os_readc
../programmers/cli/cli.html#vector_cliv
../programmers/cli/cli.html#swi_os_cli
../programmers/cli/cli.html#swi_os_cli
osbyte.html#vector_bytev
osbyte.html#swi_os_byte
osbyte.html#swi_os_byte
osword.html#vector_wordv
osword.html#swi_os_word
osword.html#swi_os_word
../filesystems/fileswitch.html#vector_filev
../filesystems/fileswitch.html#swi_os_file
../filesystems/fileswitch.html#vector_argsv
../filesystems/fileswitch.html#swi_os_args
../filesystems/fileswitch.html#swi_os_args
../filesystems/fileswitch.html#vector_bgetv
../filesystems/fileswitch.html#swi_os_bget
../filesystems/fileswitch.html#vector_bputv
../filesystems/fileswitch.html#swi_os_bput
../filesystems/fileswitch.html#vector_gbpbv
../filesystems/fileswitch.html#swi_os_gbpb
../filesystems/fileswitch.html#swi_os_gbpb
../filesystems/fileswitch.html#vector_findv
../filesystems/fileswitch.html#swi_os_find
../kernel/io/charinput.html#vector_readlinev
../kernel/io/charinput.html#swi_os_readline
../kernel/io/charinput.html#swi_os_readline
../filesystems/fileswitch.html#vector_fscv
../filesystems/fileswitch.html#swi_os_fscontrol
../filesystems/fileswitch.html#swi_os_fscontrol
events.html#vector_eventv
events.html#swi_os_generateevent
../hardware/keyboard.html#vector_keyv
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-152
../graphics/vdudrivers.html#vector_ukvdu23v
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#swi_os_writec
../graphics/vdudrivers.html#vector_ukplotv
../graphics/vdudrivers.html#swi_os_plot
../graphics/vdudrivers.html#swi_os_plot
../graphics/vdudrivers.html#vector_mousev
../graphics/vdudrivers.html#swi_os_mouse
../graphics/vdudrivers.html#vector_vduxv
../kernel/io/charoutput.html#swi_os_writec
communications.html#vector_upcallv
communications.html#swi_os_upcall
../kernel/progenv/progenv_handlers.html#vector_changeenvironmentv
../kernel/progenv/progenv_handlers.html#swi_os_changeenvironment
../kernel/progenv/progenv_handlers.html#swi_os_changeenvironment
../graphics/sprites.html#vector_spritev
../graphics/sprites.html#swi_os_spriteop

Number

&20
&21

&322

&23
24

&25
&26
&27
&328
&29
&2A
&®2B
&2C
&2D
&3E
&3F

Vector

DrawV
EconetV

ColourV

PaletteV
SerialV

FontV
PointerV
TimeShareV
LowPriorityEventV
FastTickerV
GraphicsV
UnthreadV
VideoV
SeriousErrorV
NVRAMV
RTCV

Software vectors

Description
page 0))
Draw SWI vector (on page 33) (all Draw (on page 0) SWI calls)

Econet activity vector (on page 34) (all Econet (on page 0) SWI
calls)

ColourTrans SWI vector (on page 0) (all ColourTrans (on page
0) SWI calls)

Read/write palette vector (on page 0)
OS_SerialOp indirection vector (on page 0) (SWI OS_SerialOp
(on page 0))

Font manager

Mouse drivers (on page 0)

SkyNet

For future expansion

Like TickerV, but faster (RISCOS Ltd)
Graphics hardware abstraction
High-priority callbacks

Graphics abstraction (RISCOS Ltd)
Handling of “serious errors” and exceptions
NVRAM hardware abstraction (RISCOS Ltd)
RTC hardware abstraction (RISCOS Ltd)

All other vectors are currently reserved.

Additional information on software vectors

Many of the vectors are by default used to indirect calls of SWIs, and so the routine they call is the
same as that the SWI calls.

About the filing system vectors

Note that the filing system vectors FileV (Vector &08) to FindV (Vector &0D) have 'no default
action), ie they return immediately. However, the FileSwitch (on page 0) module SWI OS_Claim
(on page 8)s the vectors whenever the machine is reset, so effectively the default action is to
perform the appropriate filing system routine.

Other vectors and resets

Vectors are freed on any kind of reset, and system extension modules must claim them again if
they need to - just as FileSwitch does.

../graphics/sprites.html#swi_os_spriteop
../graphics/draw.html#section_swi_calls
../networking/legacy/econet.html#section_swi_calls
../graphics/colourtrans.html#vector_colourv
../graphics/colourtrans.html#section_swi_calls
../graphics/colourtrans.html#section_swi_calls
../graphics/palettevector.html#vector_palettev
../hardware/serialdevice.html#vector_serialv
../hardware/serialdevice.html#swi_os_serialop
../hardware/serialdevice.html#swi_os_serialop
../hardware/mouse.html#vector_pointerv
../filesystems/fileswitch.html#chapter_fileswitch

SWi Calls

SWI Calls

OS_Claim
(SWI &1F)

Adds a routine to the list of those that claim a vector

On entry

RO =vector number (see List of software vectors (on page 5))
R1=address of claiming routine that is to be added to vector
R2 =value to be passed in R12 when the routine is called

On exit

RO preserved
R1preserved
R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call adds the routine whose address is given in R1 to the list of routines claiming the vector.
This becomes the first routine to be used when the vector is called.

Any identical earlier instances of the routine are removed. Routines are defined to be identical if
the values passed in RO, R1 and R2 are identical.

The R2 value enables the routine to have a workspace pointer set up in R12 when it is called. If
the routine using the vector is in a module (as will often be the case), this pointer will usually be
the same as its module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

Examples

MOV RO, #ByteV

ADR R1, MyByteHandler
MOV R2, #0

SWI "OS Claim"

Software vectors

Related SWIs

SWI OS_Release (on page 10)
SWI OS_CallAVector (on page 11)
SWI OS_AddToVector (on page 12)

SWi Calls

10

OS_Release
(SWI &20)

Removes a routine from the list of those that claim a vector

On entry

RO =vector number (see List of software vectors (on page 5))
R1=address of routine that is to be released from vector
R2 =value given in R2 when claimed

On exit

RO preserved
R1preserved
R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call removes the routine, which is identified by both its address and workspace pointer, from
the list for the specified vector. The routine will no longer be called. If more than one copy of the
routine is claiming the vector, only the first one to be called is removed.

Note that this SWI cannot be re-entered as it disables IRQs.

Examples

MOV RO, #ByteV

ADR R1, MyByteHandler
MOV R2, #0

SWI "OS Release"

Related SWils

SWI OS_Claim (on page 8)
SWI OS_CallAVector (on page 11)
SWI OS_AddToVector (on page 12)

Software vectors

OS_CallAVector
(SWI &34)

Calls a vector directly

On entry

RO - R8 =vector routine parameters
R9 =vector number (see List of software vectors (on page 5))

On exit

RO - R9 =depends on vector called
Cilag flag pass to vector
Vilag flag pass to vector

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant

Use

OS_CallAVector calls the vector number given in R9. RO - R8 are parameters to the vectored
routine; see the descriptions below for details.

This is used for calling vectored routines which don't have any other entry point, such as some
calls to RemV (on page 23) or CnpV (on page 29). It is also used by system extensions such as the
Draw module (on page 0), ColourTrans (on page 0) and Econet (on page 0) modules to call their
corresponding vectors.

You must not use this SWI to call ByteV (on page 0) and other such vectors, as the vector handlers
expect entry conditions you may not provide.

Note that although this SWI is re-entrant, the vectors that it calls may not be.

Related SWIs

SWI OS_Claim (on page 8)
SWI OS_Release (on page 10)
SWI OS_AddToVector (on page 12)

11

../graphics/draw.html#chapter_draw_module
../graphics/colourtrans.html#chapter_colourtrans
../networking/legacy/econet.html#chapter_econet
osbyte.html#vector_bytev

SWi Calls

OS_AddToVector
(SWI &47)

Adds a routine to the list of those that claim a vector

On entry

RO =vector number (see List of software vectors (on page 5))
R1=address of claiming routine
R2 =value to be passed in R12 when the routine is called

On exit

RO preserved
R1preserved
R2 preserved

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

This call adds the routine whose address is given in R1 to the list of routines claiming the vector.
This becomes the first routine to be used when the vector is called.

Unlike SWI OS_Claim (on page 8), any earlier instances of the same routine remain on the vector
chain.

The R2 value enables the routine to have a workspace pointer set up in R12 when it is called. If
the routine using the vector is in a module (as will often be the case), this pointer will usually be
the same as its module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

Related SWis

SWI OS_Claim (on page 8)
SWI OS_Release (on page 10)
SWI OS_CallAVector (on page 11)

12

Software vectors

OS_DelinkApplication

Remove any vectors that an application is using

On entry

RO =pointer to buffer
R1=buffer size in bytes

On exit

RO preserved
R1=number of bytes left in buffer

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is not re-entrant

Use

(SWI &4D)

When an application running in application space (at ®8000) is going to be swapped out, it must
remove all vectors that it uses. Otherwise, if they were activated, they would jump into whatever

happened to be at that location in the new application running in that space.

RO on entry points to a buffer. This is used to store details of the vectors used, so that they can be
restored afterwards. Each vector requires 12 bytes of storage and the list is terminated by a single

byte.

If the space left returned in R1 is zero, then you must allocate another butfer and repeat the call;
the butfer you have contains valid information. When you relink you must pass all the buffers

returned by this call.

Note that this SWI cannot be re-entered as it disables IRQs.

Related SWiIs
SWI OS_RelinkApplication (on page 14)

13

SWi Calls

14

OS_RelinkApplication
(SWI &4E)

Restore from a buffer any vectors that an application is using

On entry
RO = pointer to buffer

On exit

RO preserved

Interrupts

Interrupts are not altered
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

SWI is re-entrant
Use
When an application is going to be swapped in, all vectors that it uses must be restored. RO on

entry points to a buffer, which has previously been created by SWI OS_DelinkApplication (on
page 13).

Related SWils
SWI OS_DelinkApplication (on page 13)

Software vectors

Software vectors

Vector UserV
(Vector &00)

Reserved vector

On entry

None

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are undefined

Processor mode

Processor is in undefined mode

Re-entrancy
Not defined

Use

UserV is a reserved vector, and you must not use it. Its default action is to do nothing.

Related APIs

None

15

Software vectors

16

Vector IrqV
(Vector &02)

Called when an unknown IRQ is detected

On entry

None

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in irq mode

Re-entrancy

Use

Vector is not re-entrant

This vector is called when an unknown IRQ is detected.

It was provided in the Arthur operating system so you could add interrupt generating devices of
your own to the computer. RISC OS provides a new method of doing so that is more efficient,
which you should use in preference. This vector has been kept for compatibility.

The default action is to disable the interrupt generating device by masking it out in the IOC chip.

Routines that claim this vector must not corrupt any registers. You must not call this vector using
SWI OS_CallAVector (on page 11).

You must intercept calls to this vector and service the interrupt if the device is yours. You must
pass them on to earlier claimants if the device is not yours, so that interrupt handlers written to
run under Arthur can still trap interrupts they recognise.

Old software that handled Sound interrupts using this vector will no longer work, as the new
Sound module exclusively uses the RISC OS SoundIRQ device handler.

See the chapter entitled Interrupts and handling them (on page O) for details of how to add
interrupt generating devices to your computer, and the chapter entitled Handlers (on page O) for
more about handlers.

Related APIs

None

interrupthandling.html#chapter_interrupts_and_handling_them
../kernel/progenv/progenv_handlers.html#chapter_handlers

Software vectors

Vector InsV
(Vector &14)

Called to place a byte or block in a buffer

On entry

R1=operation flag:
Bit(s) Meaning

0-30 Buffer number
31 Clear: Insert a byte in a buffer (on page 19)

Set: Insert a block in a buffer (on page
21)

On exit

R1 preserved
Cfilag flag =1implies insertion failed

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Use

Vector is not re-entrant

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on page 0). The
default action is to call the ROM routine to insert byte(s) into a buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the insertion failed; it C=1 then it was not possible to insert all the
specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for butfers that are not
handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV
(on page 17), RemV (on page 23) and CnpV (on page 29). Under later versions of RISC OS you

must instead use the buffer manager SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register
(on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on

17

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager

Software vectors
page 0).

Related SWis

SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Butfer_Register (on page O)

18

../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Insert a byte in a buffer

On entry

RO =byte to be inserted
R1=operation flag:
Bit(s) Meaning

0-30 Buffer number

31 Clear: Byte insertion

On exit

RO preserved
Rl preserved
R2 corrupted
Cfilag flag:
Value Meaning

1 Insertion failed

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

Software vectors

Vector InsV O
InsertBytelnBuffer
(Vector &14)

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on page 0). The
default action is to call the ROM routine to insert byte(s) into a buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered

with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the insertion failed; it C=1 then it was not possible to insert all the

specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for butfers that are not

handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV

19

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153

Software vectors

(on page 17), RemV (on page 23) and CnpV (on page 29). Under later versions of RISC OS you
must instead use the buffer manager SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register

(on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0).

Related SWils

SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Butfer_Register (on page O)

Related vectors
InsV (on page 17)

20

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Software vectors

Vector InsV 1
InsertBlockIinBuffer
(Vector &14)

Insert a block in a buffer

On entry
R1=operation flag:
Bit(s) Meaning
0-30 Buffer number

31 Set: Block insertion
R2 =pointer to first byte of data to be inserted
R3=number of bytes to insert

On exit

RO preserved
R1preserved
R2 =pointer to remaining data to be inserted
R3 =number of bytes still to be inserted
Cfilag flag:
Value Meaning

1 Insertion failed

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on page 0). The
default action is to call the ROM routine to insert byte(s) into a buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered

with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the insertion failed; it C=1 then it was not possible to insert all the
specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not
handled by the buffer manager.

21

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153

Software vectors

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV
(on page 17), RemV (on page 23) and CnpV (on page 29). Under later versions of RISC OS you
must instead use the buffer manager SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register
(on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0).

Related SWils

SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page O)

Related vectors
InsV (on page 17)

22

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Software vectors

Vector RemV
(Vector &15)

Called to remove a byte or block from a buffer

On entry

R1=operation flag:
Bit(s) Meaning

0-30 Buffer number
31 Clear: Remove a byte from a buffer (on page 25)

Set: Remove a block from a buffer (on page 27)
Vilag flag:
Value Meaning

0 Data should be removed

1 Buffer to be examined only

On exit

R1preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Use

Vector is not re-entrant

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152 (on page 0). The
default action is to call the ROM routine to examine or remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the operation failed; if C=1 then it was not possible to remove/
examine all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for butfers that are not
handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV,

RemV and CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs
SWI Buffer_Create (on page O) or SWI Buffer_Register (on page O).

23

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Software vectors

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0)

Related SWils

SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

24

buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Software vectors

Vector RemV O
RemoveByteFromBuffer
(Vector &15)

Remove a byte from a buffer

On entry

R1=operation flag:
Bit(s) Meaning

0-30 Buffer number

31 Clear: Byte removal
Vilag flag:
Value Meaning

0 Data should be removed

1 Buffer to be examined only

On exit

RO = next byte to be removed (examine option), or corrupted (remove option)
R1preserved

R2 =byte removed (remove option), or corrupted (examine option)
Cilag flag:
Value Meaning

1 Buffer was empty on entry

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152 (on page 0). The
default action is to call the ROM routine to examine or remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered

with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the operation failed; if C=1 then it was not possible to remove/
examine all the specified data, or the specified byte.

25

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152

Software vectors

Block operations are not available in RISC OS 2, nor are they available for buffers that are not
handled by the butfer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV,
RemV and CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs
SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page O).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0)

Related SWis

SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page O)

Related vectors
RemV (on page 23)

26

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Software vectors

Vector RemV 1
RemoveBlockFromBuffer
(Vector &15)

Remove a block from a buffer

On entry

R1=operation flag:
Bit(s) Meaning
0-30 Buffer number

31 Set: Block removal
R2 = pointer to block to be filled
R3 =number of bytes to place into block
Vilag flag:
Value Meaning

0 Data should be removed

1 Buffer to be examined only

On exit

RO preserved
R1preserved
R2 = pointer to updated buffer position
R3 =number of bytes still to be removed
Cfilag flag:
Value Meaning

1 Buffer was empty on entry

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152 (on page 0). The
default action is to call the ROM routine to examine or remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

27

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152

Software vectors

28

The C flag is used to indicate if the operation failed; if C=1 then it was not possible to remove/
examine all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not
handled by the butfer manager.

To use different sized system bufters under RISC OS 2, you must provide handlers for all of InsV,
RemV and CnpV. Under later versions of RISC OS you must instead use the buffer manager SWls
SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0)

Related SWis

SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Butfer_Register (on page O)

Related vectors
RemV (on page 23)

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Software vectors

Vector CnpV
(Vector &16)

Called to count the number of entries/amount of space left in a buffer, or to flush the contents of
a buffer

On entry

R1=buffer number
The V flag and C flag encode the operation required

On exit

RO corrupted
R1=count (LSB):
Bit(s) Meaning

0-7 Least significant 8 bits of count, if V flag = O on entry; else preserved
R2 = count (MSB):
Bit(s) Meaning

0-23 Most significant 24 bits of count, if V flag = O on entry; else
preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy

Vector is not re-entrant

Use

This vector is called by SWI OS_Byte 15 (on page 0), SWI OS_Byte 21 (on page 0) and SWI
OS_Byte 128 (on page 0). The default action is to call the ROM routine to count the number of
entries in a buffer, or to flush the contents of a buffer.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

This vector can be entered in either IRQ or SVC mode.

The V flag gives a reason code that determines the operation:

Value Meaning
0 count the entries in a buffer
1 flush the buffer

29

buffers.html#swi_os_byte-15
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-128
buffers.html#swi_os_byte-128

Software vectors

If the entries are to be counted then the result returned depends on the C flag on entry as follows:

Value Meaning
0 return the number of entries in the buffer

1 return the amount of space left in the butfer
This call also copes with buffer manager buffers.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV,
RemV and CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs
SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0)

Related SWils

SWI OS_Byte 15 (on page O0)

SWI OS_Byte 21 (on page 0)

SWI OS_Byte 128 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page O)

30

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-15
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-128
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Software vectors

Vector UKSWIV
(Vector &18)

Called when an unknown SWI instruction is issued

On entry

RO - R8=as set up by the caller
R11=SWI number

On exit

None

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy

Use

Not defined

This vector is called when a SWI is issued with an unknown SWI number. Before this vector is
called, the OS tries to pass the call to any modules which have SWI table entries in their header.

The default action is to call the Unused SWI handler, which by default returns a ‘No such SWT’
error. See the section entitled Unused SWI (on page O) for tull details.

This vector can be used to add large numbers of SWIs to the system from a single module.
Normally only 64 SWIs can be added by a module; if you claim this vector, you can then trap any
additional SWIs you wish to add. (You should always use the module mechanism to add the first
64 SWIs that a module adds, as it is more efficient than using this vector.) Note that you must get
an allocation of SWI numbers from RISC OS Open betore adding any to commercially available
software. This will avoid clashes between your own software and other software.

See also the chapter entitled An introduction to SWIs (on page 0); and the chapter entitled
Handlers (on page 0) for more about handlers.

Related SWils

SWI OS_UnusedSWI (on page 0)

31

../kernel/progenv/progenv_handlers.html#subsubsection_unused_swi
https://www.riscosopen.org/content/allocate#link_allocation
swi.html#chapter_an_introduction_to_swis
../kernel/progenv/progenv_handlers.html#chapter_handlers
../kernel/progenv/progenv_handlers.html#swi_os_unusedswi

Software vectors

32

Vector TickerV
(Vector &1C)

Called every centisecond

On entry

None

On exit

None

Interrupts

Interrupts are disabled
Fast interrupts are enabled

Processor mode

Processor is in IRQ or SVC mode

Re-entrancy
Not defined

Use

This vector is called every centisecond. It must never be intercepted, as this would prevent other
clients from being called.

Routines that take a long time (say > 100ps) may re-enable IRQ so long as they disable it again
before passing the call on. If you do so, other calls may be made to TickerV in the meantime. Your
routine needs to prevent or cope with re-entrancy. One way of ensuring that the code is single
threaded is:

° to use a flag in its workspace to note that it is currently threaded, and:
° to keep a count of how many calls to TickerV have been missed while it was threaded, so
the count can be examined on exit and corrected for.

Related APIs

None

Used to indirect all SWI calls made to the Draw module

On entry

RO - R7=depends on SWI issued

R8 =index of SWI within the Draw module SWI chunk:

Index

o O B N O

10

On exit

Decoded as SWI Call

SWI Draw_ProcessPath (on page 0)
SWI Draw_Fill (on page 0)

SWI Draw_Stroke (on page 0)

SWI Draw_StrokePath (on page 0)
SWI Draw_FlattenPath (on page 0)
SWI Draw_TransformPath (on page 0)

RO - R10 =depends on SWI issued

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

Software vectors

Vector DrawV
(Vector &20)

This vector is used to indirect all SWI calls made to the Draw module. The default action is to call

the ROM routine in the Draw module that decodes and executes SWIs.

See also the chapter entitled Draw module (on page 0O)

Related SWIs

SWI Draw_ProcessPath (on page 0)
SWI Draw_Fill (on page 0)

SWI Draw_Stroke (on page 0)

SWI Draw_StrokePath (on page 0)
SWI Draw_FlattenPath (on page 0)
SWI Draw_TransformPath (on page 0)

33

../graphics/draw.html#swi_draw_processpath
../graphics/draw.html#swi_draw_fill
../graphics/draw.html#swi_draw_stroke
../graphics/draw.html#swi_draw_strokepath
../graphics/draw.html#swi_draw_flattenpath
../graphics/draw.html#swi_draw_transformpath
../graphics/draw.html#chapter_draw_module
../graphics/draw.html#swi_draw_processpath
../graphics/draw.html#swi_draw_fill
../graphics/draw.html#swi_draw_stroke
../graphics/draw.html#swi_draw_strokepath
../graphics/draw.html#swi_draw_flattenpath
../graphics/draw.html#swi_draw_transformpath

Software vectors

34

Called whenever there is activity on the Econet

On entry

RO =reason code (see below)

Vector EconetV
(Vector &21)

R1 =total size of data, or amount of data transferred, or no parameter passed

On exit

RO preserved
R1 preserved

Interrupts

Interrupts are undefined
Fast interrupts are enabled

Processor mode

Processor is in SVC mode

Re-entrancy
Not defined

Use

EconetV is called whenever there is activity on the Econet. The reason code tells you what the

activity is.

The bottom nibble of the reason code indicates whether the activity has started (0), is part way

through (1) or finished (2). The next nibble gives the type of operation.

The table below shows the reason codes that are passed. The middle (and headless) column
shows what is passed in R1, or (for the less obvious cases) when the reason code is passed:

Reason code
&10
11
12
&20
21
22
&30
&31
32
&40
41
&42
&50
&51
&52
&60
62
&70
&71
Q72
&80
&81
82
&CO
&C2
&DO
&D2

R1 = total size of data

R1 = amount of data transferred

R1 = total size of data

R1 = amount of data transferred

R1 = total size of data

R1 = amount of data transferred

R1 = total size of data

R1 = amount of data transferred

R1 = total size of data

R1 = amount of data transferred

start of a Broadcast_Wait
end of a Broadcast_Wait
R1 = total size of data

R1 = amount of data transferred

R1 = total size of data

R1 = amount of data transferred

start to wait for a transmission to end
DoTransmit returns
start to wait for a reception to end

WaitForReception returns

Software vectors

Activity

NetFS_StartLoad
NetFS_PartLoad
NetFS_FinishLoad
NetFS_StartSave
NetFS_PartSave
NetFS_FinishSave
NetFS_StartCreate
NetFS_PartCreate
NetFS_FinishCreate
NetFS_StartGetBytes
NetFS_PartGetBytes
NetFS_FinishGetBytes
NetFS_StartPutBytes
NetFS_PartPutBytes
NetFS_FinishPutBytes
NetFS_StartWait
NetFS_FinishWait
NetFS_StartBroadcastLoad
NetFS_PartBroadcastLoad
NetFS_FinishBroadcastLoad
NetFS_StartBroadcastSave>
NetFS_PartBroadcastSave
NetFS_FinishBroadcastSave
Econet_StartTransmission
Econet_FinishTransmission
Econet_StartReception

Econet_FinishReception

This vector is normally claimed by the NetStatus module, which uses the Hourglass module to
display an hourglass while the Econet is busy. It passes on the call. If the Hourglass module is
disabled, the default action is to do nothing. See the chapter entitled Hourglass (on page 0), and
the chapter entitled NetStatus (on page 0).

See also the chapter entitled NetFS (on page 0), the chapter entitled NetPrint (on page 0), and the
chapter entitled Econet (on page 0).

Related APIs

None

35

../graphics/hourglass.html#chapter_hourglass
../networking/legacy/netstatus.html#chapter_netstatus
../filesystems/netfs.html#chapter_netfs
../filesystems/netprint.html#chapter_netprint
../networking/legacy/econet.html#chapter_econet

Examples

Examples

An example program

36

The example program below illustrates all these important points. You can adapt it to write your
own routines.

The program claims WrchV (on page 0), adding a routine that:

changes the case of the character depending on the state of a flag (preprocessing)

calls the remaining routines on the vector to write the altered character

toggles the flag (postprocessing)

ensures that all registers are set to the values that would be returned by the default write
character routine

° returns control to the calling program.

Note that the program releases the vector before ending, even if an error occurs.

DIM code% 100

FOR pass%=0 TO 3 STEP 3

P%=code%

[OPT pass$%

.vectorcode$%

; save the entry value, the necessary state for the repeated call,
; and our workspace pointer

STMFD r13!, {r0, rl0-rl2, rl4}

; do our preprocessing; as a trivial example, convert to the current case

IDRB rl4, [rl2] ; pick up upper/lowercase flag

CMP rl4, #0 ; decide which territory manager table to use
LDREQ rl, lowercase table%

LDRNE rl, uppercase table%

LDRB r0, [rl, xO0] ; look up character and put back in r0

; now do the call to the rest of the vector. Since this is WrchV, we know that
; we are in SVC mode; however, the code below will correctly call the rest of
; the vector whatever the mode.

STMFD rl13!, {rl5} ; pushes PC+12, complete with flags and mode
ADD rl2, rl3, #8 ; stack contains pc,r0,rl0,rll,rl2,rl4

; so point at the stacked rl0
LDMIA rl2, {rl0-rl2, rlb5} ; and restore the state needed to call the

; rest of the chain (rl10 and rll), and
; “return” to the non-vector claiming address.
; The load of rl2 wastes one cycle.

; we are now at the pc+1l2 that we stacked; this is therefore where the
; rest of the vector returns to when it has finished.

LDR rl2, [rl3, #12] ; reload our workspace pointer
; Note that the offset of #12 - and the earlier
; #8 when we pushed onto the stack - refer to
; this example only and are not general
; Note also that the pc we pushed was
; pulled by the vector claimer.

; we could now do some more processing, set r0 up to another character,
; and loop round to done preprocess$ again; instead, we’ll just do some
; example postprocessing; we’ll toggle our upper/lowercase flag.

LDRB rl4, [rl2]

../kernel/io/charoutput.html#vector_wrchv

EOR rld4, rl4d, #1
STRB rl4, [rl2]

; now return; if there was no error then intercept the call to the
; vector, returning the original character.

LDMVCFD r13!, {r0O, rl10-rl2, rl4, rl5}

; could pass the call on instead by omitting rl4 from the addresses
; to pull - ie use LDMVCFD rl13!, {r0, rl0-rl2, rl5}

; there was an error; set up the correct error pointer, flags, and
; claim the vector.

STR r0, [rl3] ; save the error pointer
LDMFD r13!, {r0, rl10-rl2, rl4, rl5} ; return with V still set, and claim the

; reserve space to store the addresses of the territory manager case tables
.lowercase_table%

EQUD 0

.uppercase_table%

EQUD 0

]

NEXT

REM Get addresses of the territory manager case tables
SYS “Territory LowerCaseTable”,-1 TO !lowercase table%
SYS “Territory UpperCaseTable”,-1 TO !uppercase table%
DIM flag% 1
?flag%=0
Wrchvs=3
ON ERROR SYS “XOS Release”, WrchV$%, vectorcode%, flag$%: PRINTREPORTS: END
SYS “0S_Claim”, WrchV%, vectorcode%, flags
REPEAT

INPUT command$

OSCLI command$
UNTIL command$=""
SYS “XOS Release”, WrchV%, vectorcode%, flag%
END

Software vectors

vector

37

Document information

Document information

Maintainer(s): RISCOS Ltd <developer@riscos.com>

History: Revision Date Author Changes
1 ROL Initial version
2 04 Mar 2004 ROL Filled out from original document

e Summary of vectors added.

e IrqV documented.

e ColourV linked to (in ColourTrans

documentation).
e PaletteV documented.
Disclaimer: Copyright © Pace Micro Technology plc, 2001.

Portions copyright © RISCOS Ltd, 2001-2004.
Published by RISCOS Limited.
No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

38

mailto:developer@riscos.com

	Software vectors
	Introduction
	Overview
	Claiming vectors
	An example
	Vector chains
	When not to intercept a vector
	Multiply installing the same routine
	Desktop applications

	Technical details
	Use of registers
	Processor modes
	SVC mode
	IRQ mode

	Returning errors
	Returning from a vectored routine
	Passing on the call
	Intercepting the call

	More complex uses of vectors
	Vector defintions
	List of software vectors
	Additional information on software vectors
	About the filing system vectors
	Other vectors and resets

	SWI Calls
	OS_Claim
	OS_Release
	OS_CallAVector
	OS_AddToVector
	OS_DelinkApplication
	OS_RelinkApplication

	Software vectors
	Vector UserV
	Vector IrqV
	Vector InsV
	Vector InsV 0 (InsertByteInBuffer)
	Vector InsV 1 (InsertBlockInBuffer)
	Vector RemV
	Vector RemV 0 (RemoveByteFromBuffer)
	Vector RemV 1 (RemoveBlockFromBuffer)
	Vector CnpV
	Vector UKSWIV
	Vector TickerV
	Vector DrawV
	Vector EconetV

	Examples
	An example program

	Document information
	Initial version
	Filled out from original document

