
Introduction
We have already seen that one of the most important features of RISC OS is the ease with which it
can be altered and extended. Most of RISC OS is written as modules; these can be replaced, and
extra ones can be added.

The exception to this is the kernel, which provides the central core of functions necessary for
RISC OS to work. You cannot replace the entire kernel. Instead, you can change or replace how
certain fundamental routines of the RISC OS kernel work. You do this by using softwsoftware vare vectorsectors,
or vvectorsectors for short. These are held in the computer's RAM; RISC OS uses them to record where it
can find these routines.

Many of these routines perform all the functions of a given SWI. The corresponding SWI is then
known as a vvectoredectored SWI.

Software vectors

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

Overview
Claiming vClaiming vectectorsors

When you call a SWI, RISC OS uses the SWI number to decide which routine in the RISC OS
ROMs you want. For an ordinary SWI, RISC OS looks up the address of the SWI routine and then
branches to it. However, if you call a vectored SWI, it instead gets the address from the
corresponding vector that is held in RAM. Normally this would be the address of the standard
routine held in ROM.

You can change this address by using the SWI OS_Claim (on page 8), documented later in this
chapter. RISC OS will then instead branch to your own routine, held at the address you pass to
OS_Claim.

Your own routine can do one of the following:

● replace the original routine, passing control directly back to the caller
● do some processing before calling the standard routine, which then passes control back to

the caller
● call the standard routine, process some of the results it returns, and then pass control back

to the caller.

If your routine completely replaces the standard one, it is said to interceptintercept the call; otherwise it is
said to pass onpass on the call.

An eAn exxampleample

As an example, let's look at the SWI OS_WriteC (on page 0) routine. When RISC OS decodes a
SWI with SWI number &00, it knows that you are requesting a write character operation.
RISC OS gets an address from a vector - in this case called WrchV (on page 0) - and passes
control to the routine.

Now by default, the WrchV contains the address of the standard write character routine in ROM.
If you claim the vector using SWI OS_Claim (on page 8), whenever an OS_WriteC is executed,
your own routine will be called first.

VVectector chainsor chains

So far, we've deliberately been vague about how vectors store the addresses of the routine. In fact,
the vector is the head of a chain of structures, which point to the next claimant on the vector, and
to both the code and the workspace associated with this claimant. Consequently:

● there may be more than one routine on a given vector
● no claimant has to remember what the previous owner of the vector was
● vectors can be claimed and released by many different pieces of software in any order, not

just in a stack-like order.

The routines are called in the reverse order to the order in which they called SWI OS_Claim (on
page 8). The last routine to OS_Claim the vector will be the first one called. If that routine passes
the call on, the next most recent claimant will get the call, and so on. If any of the routines on the
vector intercept the call, the earlier claimants will not be called.

Overview

2

../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#vector_wrchv

When noWhen not tt to ino inttererccepept a vt a vectectoror

There are some vectors which should not be intercepted; they must always be passed on to other
claimants. This is because the default owner, ie the routine which is called if no one has claimed
the vector, might perform some important action. The error vector, ErrorV (on page 0), is a good
example. The default owner of this vector is a routine which calls the error handler. If you
intercept ErrorV, the error handler will never be called, and errors won't be dealt with properly.

MultiplMultiply installing the same ry installing the same routineoutine

When SWI OS_Claim (on page 8) adds a routine to a vector, it automatically removes any
identical earlier instances of the routine from the chain (ie instances having the same pointer to
code, and the same pointer to workspace). If you don't want this to happen, use the SWI
OS_AddToVector (on page 12) instead.

DesktDesktop applicaop applicationstions

Under an environment such as the desktop, multiple applications are run concurrently. The
currently running application is mapped into memory at &8000. Desktop applications
periodically return control to the Window Manager (or WWimpimp) by calling the SWI Wimp_Poll (on
page 0); at this point the Wimp may decide to swap to another application. In doing so, it maps
the current application out of the application space, and maps the new application into that
space. Thus every application is given the illusion that it is the only one in the system.

If your application has claimed a vector using a routine in its own space, it must obviously release
that vector each time it (and the claiming routine) may be swapped out of application space.
Before each call your application makes to Wimp_Poll (which is when it may be swapped out), it
must call SWI OS_DelinkApplication (on page 13) to remove any claiming routines in application
space. When its call to Wimp_Poll returns (and hence it is swapped back in), it must then call SWI
OS_RelinkApplication (on page 14) to reclaim those vectors.

Software vectors

3

errors.html#vector_errorv
../desktop/wimp/task_scheduling.html#swi_wimp_poll
../desktop/wimp/task_scheduling.html#swi_wimp_poll

Technical details
UUse ose of rf registegistersers

If you write a routine that uses a vector, it must obey the same entry and exit conditions as the
corresponding RISC OS routine. For example, a routine on WrchV (on page 0) must preserve all
registers, just as the SWI OS_WriteC (on page 0) does.

If you pass the call on, you can deliberately alter some of the registers to change the effect of the
call. However, if you do so, you must arrange for control to return again to your routine. You
must then restore the register values that the old routine would normally have returned, before
finally returning control to the calling program. This is because some applications might rely on
the returned values being those documented in this manual.

PrPrococessor modesessor modes

The processor mode in which the routine is entered depends on the vector:

● Routines vectored through IrqV (on page 16) are always executed in IRQ mode.
● Routines vectored through Vectors &10 to &16 (EventV (on page 0), InsV (on page 17),

KeyV (on page 0), RemV (on page 23), CnpV (on page 29)) and TickerV (on page 32) are
generally executed in IRQ mode, but may be executed in SVC mode if called using SWI
OS_CallAVector (on page 11), and in certain other unspecified circumstances.

● All other routines are executed in SVC mode – the mode entered when the SWI instruction
is executed.

SVC mode

Note that if you call a SWI from a routine that is in SVC mode, you will corrupt the return address
held in R14. Consequently, your routine should use the full, descending stack addressed by R13 to
save R14 first. See the section entitled Important notes (on page 0) for a more complete
explanation of this.

IRQ mode

If your routine will be entered in IRQ mode there are other restrictions. These are detailed in full
in the Restrictions (on page 0).

RReeturning errturning errorsors

Routines using most of the vectors can return errors by setting the V flag, and storing an error
pointer in R0. The routine must not pass on the call, as one of the parameters (R0) has been
changed; this would cause problems for the next routine on the vector. The routine must instead
intercept the call, returning control back to the calling program.

You can't do this with all the vectors; some of them (those involving IRQ calls in particular) have
nowhere to send the error to.

RReeturning frturning from a vom a vectectorored red routineoutine

You should use one of two methods to return from a vectored routine. These are described
immediately below; for an example, see the example program (on page 36).

Technical details

4

../kernel/io/charoutput.html#vector_wrchv
../kernel/io/charoutput.html#swi_os_writec
events.html#vector_eventv
../hardware/keyboard.html#vector_keyv
swi.html#subsection_important_notes
interrupthandling.html#subsection_restrictions

Passing on the call

If you wish to pass on the call (to the previous owner), you should return by copying R14 into the
PC. Use the instruction:

MOVS PC,R14

Intercepting the call

If you wish to intercept the call, you should pull an exit address (which has been set up by
RISC OS) from the stack and jump to it. Use the instruction:

LDMFD R13!,{PC}

Control will return to the caller of the vector.

MMorore ce compleomplex uses ox uses of vf vectectorsors

Sometimes, you may want to do more complex things with a vector, such as:

● preprocessing registers to alter the effect of a standard routine
● postprocessing to change the effect of future calls
● repeatedly calling a routine or group of routines.

There are a number of important things to remember if you are doing so. You must make sure
that:

● the vector still looks exactly the same to a program that is calling it, even if it now does
different things

● your routine will cope with being called in all the processor modes that its vector uses (for
example, SVC or IRQ mode for a routine on InsV (on page 17))

● the values of R10 and R11 are preserved when earlier claimants of the vector are repeatedly
called.

VVectector deor definfintionstions

In most cases, the interrupt status is given as undefined. This is because the vectors may be called
either by the SWI(s) which normally use them, many of which ensure a given interrupt status, or
by SWI OS_CallAVector (on page 11), which does not alter the interrupt status.

List oList of sof softwftwarare ve vectectorsors

The software vectors are listed below. The names of the routines which can cause each vector to
be called are in brackets:

Software vectors

5

NumberNumber VVectorector DescriptionDescription

&00 UserV User vector (on page 15) is reserved and must not be used

&01 ErrorV Error vector (on page 0) (SWI OS_GenerateError (on page 0))

&02 IrqV Unknown interrupt vector (on page 16)

&03 WrchV Write character vector (on page 0) (SWI OS_WriteC (on page
0))

&04 RdchV Read character vector (on page 0) (SWI OS_ReadC (on page
0))

&05 CLIV Command line interpreter vector (on page 0) (SWI OS_CLI
(on page 0))

&06 ByteV OS_Byte indirection vector (on page 0) (SWI OS_Byte (on
page 0))

&07 WordV OS_Word indirection vector (on page 0) (SWI OS_Word (on
page 0))

&08 FileV File read/write vector (on page 0) (SWI OS_File (on page 0))

&09 ArgsV File arguments read/write vector (on page 0) (SWI OS_Args
(on page 0))

&0A BGetV File byte read vector (on page 0) (SWI OS_BGet (on page 0))

&0B BPutV File byte put vector (on page 0) (SWI OS_BPut (on page 0))

&0C GBPBV File byte block get/put vector (on page 0) (SWI OS_GBPB (on
page 0))

&0D FindV File open vector (on page 0) (SWI OS_Find (on page 0))

&0E ReadLineV Read a line of text vector (on page 0) (SWI OS_ReadLine (on
page 0))

&0F FSCV Filing system control vector (on page 0) (SWI OS_FSControl
(on page 0))

&10 EventV Event vector (on page 0) (SWI OS_GenerateEvent (on page 0))

&11 Reserved

&12 Reserved

&13 KeyV Key vector (on page 0)

&14 InsV Buffer insert vector (on page 17) (SWI OS_Byte 138 (on page
0))

&15 RemV Buffer remove vector (on page 23) (SWI OS_Byte 145 (on page
0))

&16 CnpV Count/Flush Buffer vector (on page 29) (SWI OS_Byte 21 (on
page 0) & SWI OS_Byte 152 (on page 0))

&17 UKVDU23V Unknown VDU23 vector (on page 0) (SWI OS_WriteC (on
page 0))

&18 UKSWIV Unknown SWI vector (on page 31)

&19 UKPLOTV Unknown VDU25 vector (on page 0) (SWI OS_Plot (on page
0))

&1A MouseV Mouse vector (on page 0) (SWI OS_Mouse (on page 0))

&1B VDUXV VDU vector (on page 0) (SWI OS_WriteC (on page 0))

&1C TickerV 100Hz vector (on page 32)

&1D UpcallV Warning vector (on page 0) (SWI OS_UpCall (on page 0))

&1E ChangeEnvironmentV Environment change vector (on page 0) (SWI
OS_ChangeEnvironment (on page 0))

&1F SpriteV Sprite indirection vector (on page 0) (SWI OS_SpriteOp (on

Technical details

6

errors.html#vector_errorv
errors.html#swi_os_generateerror
../kernel/io/charoutput.html#vector_wrchv
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charinput.html#vector_rdchv
../kernel/io/charinput.html#swi_os_readc
../kernel/io/charinput.html#swi_os_readc
../programmers/cli/cli.html#vector_cliv
../programmers/cli/cli.html#swi_os_cli
../programmers/cli/cli.html#swi_os_cli
osbyte.html#vector_bytev
osbyte.html#swi_os_byte
osbyte.html#swi_os_byte
osword.html#vector_wordv
osword.html#swi_os_word
osword.html#swi_os_word
../filesystems/fileswitch.html#vector_filev
../filesystems/fileswitch.html#swi_os_file
../filesystems/fileswitch.html#vector_argsv
../filesystems/fileswitch.html#swi_os_args
../filesystems/fileswitch.html#swi_os_args
../filesystems/fileswitch.html#vector_bgetv
../filesystems/fileswitch.html#swi_os_bget
../filesystems/fileswitch.html#vector_bputv
../filesystems/fileswitch.html#swi_os_bput
../filesystems/fileswitch.html#vector_gbpbv
../filesystems/fileswitch.html#swi_os_gbpb
../filesystems/fileswitch.html#swi_os_gbpb
../filesystems/fileswitch.html#vector_findv
../filesystems/fileswitch.html#swi_os_find
../kernel/io/charinput.html#vector_readlinev
../kernel/io/charinput.html#swi_os_readline
../kernel/io/charinput.html#swi_os_readline
../filesystems/fileswitch.html#vector_fscv
../filesystems/fileswitch.html#swi_os_fscontrol
../filesystems/fileswitch.html#swi_os_fscontrol
events.html#vector_eventv
events.html#swi_os_generateevent
../hardware/keyboard.html#vector_keyv
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-152
../graphics/vdudrivers.html#vector_ukvdu23v
../kernel/io/charoutput.html#swi_os_writec
../kernel/io/charoutput.html#swi_os_writec
../graphics/vdudrivers.html#vector_ukplotv
../graphics/vdudrivers.html#swi_os_plot
../graphics/vdudrivers.html#swi_os_plot
../graphics/vdudrivers.html#vector_mousev
../graphics/vdudrivers.html#swi_os_mouse
../graphics/vdudrivers.html#vector_vduxv
../kernel/io/charoutput.html#swi_os_writec
communications.html#vector_upcallv
communications.html#swi_os_upcall
../kernel/progenv/progenv_handlers.html#vector_changeenvironmentv
../kernel/progenv/progenv_handlers.html#swi_os_changeenvironment
../kernel/progenv/progenv_handlers.html#swi_os_changeenvironment
../graphics/sprites.html#vector_spritev
../graphics/sprites.html#swi_os_spriteop

NumberNumber VVectorector DescriptionDescription

page 0))

&20 DrawV Draw SWI vector (on page 33) (all Draw (on page 0) SWI calls)

&21 EconetV Econet activity vector (on page 34) (all Econet (on page 0) SWI
calls)

&22 ColourV ColourTrans SWI vector (on page 0) (all ColourTrans (on page
0) SWI calls)

&23 PaletteV Read/write palette vector (on page 0)

&24 SerialV OS_SerialOp indirection vector (on page 0) (SWI OS_SerialOp
(on page 0))

&25 FontV Font manager

&26 PointerV Mouse drivers (on page 0)

&27 TimeShareV SkyNet

&28 LowPriorityEventV For future expansion

&29 FastTickerV Like TickerV, but faster (RISCOS Ltd)

&2A GraphicsV Graphics hardware abstraction

&2B UnthreadV High-priority callbacks

&2C VideoV Graphics abstraction (RISCOS Ltd)

&2D SeriousErrorV Handling of “serious errors” and exceptions

&3E NVRAMV NVRAM hardware abstraction (RISCOS Ltd)

&3F RTCV RTC hardware abstraction (RISCOS Ltd)

All other vectors are currently reserved.

AAdditional indditional infformaormation on sotion on softwftwarare ve vectectorsors

Many of the vectors are by default used to indirect calls of SWIs, and so the routine they call is the
same as that the SWI calls.

About the filing system vectors

Note that the filing system vectors FileV (Vector &08) to FindV (Vector &0D) have 'no default
action', ie they return immediately. However, the FileSwitch (on page 0) module SWI OS_Claim
(on page 8)s the vectors whenever the machine is reset, so effectively the default action is to
perform the appropriate filing system routine.

Other vectors and resets

Vectors are freed on any kind of reset, and system extension modules must claim them again if
they need to - just as FileSwitch does.

Software vectors

7

../graphics/sprites.html#swi_os_spriteop
../graphics/draw.html#section_swi_calls
../networking/legacy/econet.html#section_swi_calls
../graphics/colourtrans.html#vector_colourv
../graphics/colourtrans.html#section_swi_calls
../graphics/colourtrans.html#section_swi_calls
../graphics/palettevector.html#vector_palettev
../hardware/serialdevice.html#vector_serialv
../hardware/serialdevice.html#swi_os_serialop
../hardware/serialdevice.html#swi_os_serialop
../hardware/mouse.html#vector_pointerv
../filesystems/fileswitch.html#chapter_fileswitch

SWI Calls

OS_Claim
(SWI &1F)

Adds a routine to the list of those that claim a vector

OOn enn entrytry
R0 = vector number (see List of software vectors (on page 5))
R1 = address of claiming routine that is to be added to vector
R2 = value to be passed in R12 when the routine is called

OOn en exitxit
R0 preserved
R1 preserved
R2 preserved

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call adds the routine whose address is given in R1 to the list of routines claiming the vector.
This becomes the first routine to be used when the vector is called.

Any identical earlier instances of the routine are removed. Routines are defined to be identical if
the values passed in R0, R1 and R2 are identical.

The R2 value enables the routine to have a workspace pointer set up in R12 when it is called. If
the routine using the vector is in a module (as will often be the case), this pointer will usually be
the same as its module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

ExExamplesamples

MOV R0, #ByteV
ADR R1, MyByteHandler
MOV R2, #0
SWI "OS_Claim"

SWI Calls

8

RRelaelatted Sed SWIWIss
SWI OS_Release (on page 10)
SWI OS_CallAVector (on page 11)
SWI OS_AddToVector (on page 12)

Software vectors

9

OS_Release
(SWI &20)

Removes a routine from the list of those that claim a vector

OOn enn entrytry
R0 = vector number (see List of software vectors (on page 5))
R1 = address of routine that is to be released from vector
R2 = value given in R2 when claimed

OOn en exitxit
R0 preserved
R1 preserved
R2 preserved

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call removes the routine, which is identified by both its address and workspace pointer, from
the list for the specified vector. The routine will no longer be called. If more than one copy of the
routine is claiming the vector, only the first one to be called is removed.

Note that this SWI cannot be re-entered as it disables IRQs.

ExExamplesamples

MOV R0, #ByteV
ADR R1, MyByteHandler
MOV R2, #0
SWI "OS_Release"

RRelaelatted Sed SWIWIss
SWI OS_Claim (on page 8)
SWI OS_CallAVector (on page 11)
SWI OS_AddToVector (on page 12)

SWI Calls

10

OS_CallAVector
(SWI &34)

Calls a vector directly

OOn enn entrytry
R0 - R8 = vector routine parameters

R9 = vector number (see List of software vectors (on page 5))

OOn en exitxit
R0 - R9 = depends on vector called

C flag flag pass to vector
V flag flag pass to vector

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is re-entrant

UUsese

OS_CallAVector calls the vector number given in R9. R0 - R8 are parameters to the vectored
routine; see the descriptions below for details.

This is used for calling vectored routines which don't have any other entry point, such as some
calls to RemV (on page 23) or CnpV (on page 29). It is also used by system extensions such as the
Draw module (on page 0), ColourTrans (on page 0) and Econet (on page 0) modules to call their
corresponding vectors.

You must not use this SWI to call ByteV (on page 0) and other such vectors, as the vector handlers
expect entry conditions you may not provide.

Note that although this SWI is re-entrant, the vectors that it calls may not be.

RRelaelatted Sed SWIWIss
SWI OS_Claim (on page 8)
SWI OS_Release (on page 10)
SWI OS_AddToVector (on page 12)

Software vectors

11

../graphics/draw.html#chapter_draw_module
../graphics/colourtrans.html#chapter_colourtrans
../networking/legacy/econet.html#chapter_econet
osbyte.html#vector_bytev

OS_AddToVector
(SWI &47)

Adds a routine to the list of those that claim a vector

OOn enn entrytry
R0 = vector number (see List of software vectors (on page 5))
R1 = address of claiming routine
R2 = value to be passed in R12 when the routine is called

OOn en exitxit
R0 preserved
R1 preserved
R2 preserved

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

This call adds the routine whose address is given in R1 to the list of routines claiming the vector.
This becomes the first routine to be used when the vector is called.

Unlike SWI OS_Claim (on page 8), any earlier instances of the same routine remain on the vector
chain.

The R2 value enables the routine to have a workspace pointer set up in R12 when it is called. If
the routine using the vector is in a module (as will often be the case), this pointer will usually be
the same as its module workspace pointer.

Note that this SWI cannot be re-entered as it disables IRQs.

RRelaelatted Sed SWIWIss
SWI OS_Claim (on page 8)
SWI OS_Release (on page 10)
SWI OS_CallAVector (on page 11)

SWI Calls

12

OS_DelinkApplication
(SWI &4D)

Remove any vectors that an application is using

OOn enn entrytry
R0 = pointer to buffer
R1 = buffer size in bytes

OOn en exitxit
R0 preserved
R1 = number of bytes left in buffer

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is not re-entrant

UUsese

When an application running in application space (at &8000) is going to be swapped out, it must
remove all vectors that it uses. Otherwise, if they were activated, they would jump into whatever
happened to be at that location in the new application running in that space.

R0 on entry points to a buffer. This is used to store details of the vectors used, so that they can be
restored afterwards. Each vector requires 12 bytes of storage and the list is terminated by a single
byte.

If the space left returned in R1 is zero, then you must allocate another buffer and repeat the call;
the buffer you have contains valid information. When you relink you must pass all the buffers
returned by this call.

Note that this SWI cannot be re-entered as it disables IRQs.

RRelaelatted Sed SWIWIss
SWI OS_RelinkApplication (on page 14)

Software vectors

13

OS_RelinkApplication
(SWI &4E)

Restore from a buffer any vectors that an application is using

OOn enn entrytry
R0 = pointer to buffer

OOn en exitxit
R0 preserved

InIntterruperruptsts
Interrupts are not altered
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
SWI is re-entrant

UUsese

When an application is going to be swapped in, all vectors that it uses must be restored. R0 on
entry points to a buffer, which has previously been created by SWI OS_DelinkApplication (on
page 13).

RRelaelatted Sed SWIWIss
SWI OS_DelinkApplication (on page 13)

SWI Calls

14

Software vectors

Vector UserV
(Vector &00)

Reserved vector

OOn enn entrytry
None

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are undefined

PrPrococessor modeessor mode
Processor is in undefined mode

RRe-ene-entrtrancancyy
Not defined

UUsese

UserV is a reserved vector, and you must not use it. Its default action is to do nothing.

RRelaelatted APIed APIss
None

Software vectors

15

Vector IrqV
(Vector &02)

Called when an unknown IRQ is detected

OOn enn entrytry
None

OOn en exitxit
None

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in irq mode

RRe-ene-entrtrancancyy
Vector is not re-entrant

UUsese

This vector is called when an unknown IRQ is detected.

It was provided in the Arthur operating system so you could add interrupt generating devices of
your own to the computer. RISC OS provides a new method of doing so that is more efficient,
which you should use in preference. This vector has been kept for compatibility.

The default action is to disable the interrupt generating device by masking it out in the IOC chip.

Routines that claim this vector must not corrupt any registers. You must not call this vector using
SWI OS_CallAVector (on page 11).

You must intercept calls to this vector and service the interrupt if the device is yours. You must
pass them on to earlier claimants if the device is not yours, so that interrupt handlers written to
run under Arthur can still trap interrupts they recognise.

Old software that handled Sound interrupts using this vector will no longer work, as the new
Sound module exclusively uses the RISC OS SoundIRQ device handler.

See the chapter entitled Interrupts and handling them (on page 0) for details of how to add
interrupt generating devices to your computer, and the chapter entitled Handlers (on page 0) for
more about handlers.

RRelaelatted APIed APIss
None

Software vectors

16

interrupthandling.html#chapter_interrupts_and_handling_them
../kernel/progenv/progenv_handlers.html#chapter_handlers

Vector InsV
(Vector &14)

Called to place a byte or block in a buffer

OOn enn entrytry
R1 = operation flag:

Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Clear: Insert a byte in a buffer (on page 19)

Set: Insert a block in a buffer (on page
21)

OOn en exitxit
R1 preserved

C flag flag = 1 implies insertion failed

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in IRQ or SVC mode

RRe-ene-entrtrancancyy
Vector is not re-entrant

UUsese

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on page 0). The
default action is to call the ROM routine to insert byte(s) into a buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the insertion failed; if C=1 then it was not possible to insert all the
specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not
handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV
(on page 17), RemV (on page 23) and CnpV (on page 29). Under later versions of RISC OS you
must instead use the buffer manager SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register
(on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on

Software vectors

17

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager

page 0).

RRelaelatted Sed SWIWIss
SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

Software vectors

18

../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector InsV 0
InsertByteInBuffer

(Vector &14)
Insert a byte in a buffer

OOn enn entrytry
R0 = byte to be inserted
R1 = operation flag:

Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Clear: Byte insertion

OOn en exitxit
R0 preserved
R1 preserved
R2 corrupted

C flag flag:
VValuealue MeaningMeaning

1 Insertion failed

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in IRQ or SVC mode

RRe-ene-entrtrancancyy
Vector is not re-entrant

UUsese

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on page 0). The
default action is to call the ROM routine to insert byte(s) into a buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the insertion failed; if C=1 then it was not possible to insert all the
specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not
handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV

Software vectors

19

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153

(on page 17), RemV (on page 23) and CnpV (on page 29). Under later versions of RISC OS you
must instead use the buffer manager SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register
(on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0).

RRelaelatted Sed SWIWIss
SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

RRelaelatted ved vectectorsors
InsV (on page 17)

Software vectors

20

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector InsV 1
InsertBlockInBuffer

(Vector &14)
Insert a block in a buffer

OOn enn entrytry
R1 = operation flag:

Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Set: Block insertion
R2 = pointer to first byte of data to be inserted
R3 = number of bytes to insert

OOn en exitxit
R0 preserved
R1 preserved
R2 = pointer to remaining data to be inserted
R3 = number of bytes still to be inserted

C flag flag:
VValuealue MeaningMeaning

1 Insertion failed

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in IRQ or SVC mode

RRe-ene-entrtrancancyy
Vector is not re-entrant

UUsese

This vector is called by SWI OS_Byte 138 (on page 0) and SWI OS_Byte 153 (on page 0). The
default action is to call the ROM routine to insert byte(s) into a buffer from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the insertion failed; if C=1 then it was not possible to insert all the
specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not
handled by the buffer manager.

Software vectors

21

buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV
(on page 17), RemV (on page 23) and CnpV (on page 29). Under later versions of RISC OS you
must instead use the buffer manager SWIs SWI Buffer_Create (on page 0) or SWI Buffer_Register
(on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0).

RRelaelatted Sed SWIWIss
SWI OS_Byte 138 (on page 0)
SWI OS_Byte 153 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

RRelaelatted ved vectectorsors
InsV (on page 17)

Software vectors

22

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-138
buffers.html#swi_os_byte-153
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector RemV
(Vector &15)

Called to remove a byte or block from a buffer

OOn enn entrytry
R1 = operation flag:

Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Clear: Remove a byte from a buffer (on page 25)

Set: Remove a block from a buffer (on page 27)
V flag flag:

VValuealue MeaningMeaning

0 Data should be removed

1 Buffer to be examined only

OOn en exitxit
R1 preserved

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in IRQ or SVC mode

RRe-ene-entrtrancancyy
Vector is not re-entrant

UUsese

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152 (on page 0). The
default action is to call the ROM routine to examine or remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the operation failed; if C=1 then it was not possible to remove/
examine all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not
handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV,
RemV and CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs
SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

Software vectors

23

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0)

RRelaelatted Sed SWIWIss
SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

Software vectors

24

buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector RemV 0
RemoveByteFromBuffer

(Vector &15)
Remove a byte from a buffer

OOn enn entrytry
R1 = operation flag:

Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Clear: Byte removal
V flag flag:

VValuealue MeaningMeaning

0 Data should be removed

1 Buffer to be examined only

OOn en exitxit
R0 = next byte to be removed (examine option), or corrupted (remove option)
R1 preserved
R2 = byte removed (remove option), or corrupted (examine option)

C flag flag:
VValuealue MeaningMeaning

1 Buffer was empty on entry

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in IRQ or SVC mode

RRe-ene-entrtrancancyy
Vector is not re-entrant

UUsese

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152 (on page 0). The
default action is to call the ROM routine to examine or remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

The C flag is used to indicate if the operation failed; if C=1 then it was not possible to remove/
examine all the specified data, or the specified byte.

Software vectors

25

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152

Block operations are not available in RISC OS 2, nor are they available for buffers that are not
handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV,
RemV and CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs
SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0)

RRelaelatted Sed SWIWIss
SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

RRelaelatted ved vectectorsors
RemV (on page 23)

Software vectors

26

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector RemV 1
RemoveBlockFromBuffer

(Vector &15)
Remove a block from a buffer

OOn enn entrytry
R1 = operation flag:

Bit(s)Bit(s) MeaningMeaning

0-30 Buffer number

31 Set: Block removal
R2 = pointer to block to be filled
R3 = number of bytes to place into block

V flag flag:
VValuealue MeaningMeaning

0 Data should be removed

1 Buffer to be examined only

OOn en exitxit
R0 preserved
R1 preserved
R2 = pointer to updated buffer position
R3 = number of bytes still to be removed

C flag flag:
VValuealue MeaningMeaning

1 Buffer was empty on entry

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in IRQ or SVC mode

RRe-ene-entrtrancancyy
Vector is not re-entrant

UUsese

This vector is called by SWI OS_Byte 145 (on page 0) and SWI OS_Byte 152 (on page 0). The
default action is to call the ROM routine to examine or remove byte(s) from the system buffers.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

Software vectors

27

buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152

The C flag is used to indicate if the operation failed; if C=1 then it was not possible to remove/
examine all the specified data, or the specified byte.

Block operations are not available in RISC OS 2, nor are they available for buffers that are not
handled by the buffer manager.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV,
RemV and CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs
SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0)

RRelaelatted Sed SWIWIss
SWI OS_Byte 145 (on page 0)
SWI OS_Byte 152 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

RRelaelatted ved vectectorsors
RemV (on page 23)

Software vectors

28

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-145
buffers.html#swi_os_byte-152
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector CnpV
(Vector &16)

Called to count the number of entries/amount of space left in a buffer, or to flush the contents of
a buffer

OOn enn entrytry
R1 = buffer number

The V flag and C flag encode the operation required

OOn en exitxit
R0 corrupted
R1 = count (LSB):

Bit(s)Bit(s) MeaningMeaning

0-7 Least significant 8 bits of count, if V flag = 0 on entry; else preserved
R2 = count (MSB):

Bit(s)Bit(s) MeaningMeaning

0-23 Most significant 24 bits of count, if V flag = 0 on entry; else
preserved

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in IRQ or SVC mode

RRe-ene-entrtrancancyy
Vector is not re-entrant

UUsese

This vector is called by SWI OS_Byte 15 (on page 0), SWI OS_Byte 21 (on page 0) and SWI
OS_Byte 128 (on page 0). The default action is to call the ROM routine to count the number of
entries in a buffer, or to flush the contents of a buffer.

It may also be called using SWI OS_CallAVector (on page 11). It must be called with interrupts
disabled (the OS_Bytes do this automatically), therefore code on the vector can only be entered
with interrupts disabled and is not re-entrant.

This vector can be entered in either IRQ or SVC mode.

The V flag gives a reason code that determines the operation:

VValuealue MeaningMeaning

0 count the entries in a buffer

1 flush the buffer

Software vectors

29

buffers.html#swi_os_byte-15
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-128
buffers.html#swi_os_byte-128

If the entries are to be counted then the result returned depends on the C flag on entry as follows:

VValuealue MeaningMeaning

0 return the number of entries in the buffer

1 return the amount of space left in the buffer

This call also copes with buffer manager buffers.

To use different sized system buffers under RISC OS 2, you must provide handlers for all of InsV,
RemV and CnpV. Under later versions of RISC OS you must instead use the buffer manager SWIs
SWI Buffer_Create (on page 0) or SWI Buffer_Register (on page 0).

See also the chapter entitled Buffers (on page 0), and the chapter entitled Buffer manager (on
page 0)

RRelaelatted Sed SWIWIss
SWI OS_Byte 15 (on page 0)
SWI OS_Byte 21 (on page 0)
SWI OS_Byte 128 (on page 0)
SWI OS_CallAVector (on page 11)
SWI Buffer_Create (on page 0)
SWI Buffer_Register (on page 0)

Software vectors

30

../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register
buffers.html#chapter_buffers
../programmers/buffermanager.html#chapter_buffer_manager
../programmers/buffermanager.html#chapter_buffer_manager
buffers.html#swi_os_byte-15
buffers.html#swi_os_byte-21
buffers.html#swi_os_byte-128
../programmers/buffermanager.html#swi_buffer_create
../programmers/buffermanager.html#swi_buffer_register

Vector UKSWIV
(Vector &18)

Called when an unknown SWI instruction is issued

OOn enn entrytry
R0 - R8 = as set up by the caller

R11 = SWI number

OOn en exitxit
None

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
Not defined

UUsese

This vector is called when a SWI is issued with an unknown SWI number. Before this vector is
called, the OS tries to pass the call to any modules which have SWI table entries in their header.

The default action is to call the Unused SWI handler, which by default returns a ‘No such SWI’
error. See the section entitled Unused SWI (on page 0) for full details.

This vector can be used to add large numbers of SWIs to the system from a single module.
Normally only 64 SWIs can be added by a module; if you claim this vector, you can then trap any
additional SWIs you wish to add. (You should always use the module mechanism to add the first
64 SWIs that a module adds, as it is more efficient than using this vector.) Note that you must get
an allocation of SWI numbers from RISC OS Open before adding any to commercially available
software. This will avoid clashes between your own software and other software.

See also the chapter entitled An introduction to SWIs (on page 0); and the chapter entitled
Handlers (on page 0) for more about handlers.

RRelaelatted Sed SWIWIss
SWI OS_UnusedSWI (on page 0)

Software vectors

31

../kernel/progenv/progenv_handlers.html#subsubsection_unused_swi
https://www.riscosopen.org/content/allocate#link_allocation
swi.html#chapter_an_introduction_to_swis
../kernel/progenv/progenv_handlers.html#chapter_handlers
../kernel/progenv/progenv_handlers.html#swi_os_unusedswi

Vector TickerV
(Vector &1C)

Called every centisecond

OOn enn entrytry
None

OOn en exitxit
None

InIntterruperruptsts
Interrupts are disabled
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in IRQ or SVC mode

RRe-ene-entrtrancancyy
Not defined

UUsese

This vector is called every centisecond. It must never be intercepted, as this would prevent other
clients from being called.

Routines that take a long time (say > 100μs) may re-enable IRQ so long as they disable it again
before passing the call on. If you do so, other calls may be made to TickerV in the meantime. Your
routine needs to prevent or cope with re-entrancy. One way of ensuring that the code is single
threaded is:

● to use a flag in its workspace to note that it is currently threaded, and:
● to keep a count of how many calls to TickerV have been missed while it was threaded, so

the count can be examined on exit and corrected for.

RRelaelatted APIed APIss
None

Software vectors

32

Vector DrawV
(Vector &20)

Used to indirect all SWI calls made to the Draw module

OOn enn entrytry
R0 - R7 = depends on SWI issued

R8 = index of SWI within the Draw module SWI chunk:
IndexIndex Decoded as SDecoded as SWI CalWI Calll

0 SWI Draw_ProcessPath (on page 0)

2 SWI Draw_Fill (on page 0)

4 SWI Draw_Stroke (on page 0)

6 SWI Draw_StrokePath (on page 0)

8 SWI Draw_FlattenPath (on page 0)

10 SWI Draw_TransformPath (on page 0)

OOn en exitxit
R0 - R10 = depends on SWI issued

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
Not defined

UUsese

This vector is used to indirect alalll SWI calls made to the Draw module. The default action is to call
the ROM routine in the Draw module that decodes and executes SWIs.

See also the chapter entitled Draw module (on page 0)

RRelaelatted Sed SWIWIss
SWI Draw_ProcessPath (on page 0)
SWI Draw_Fill (on page 0)
SWI Draw_Stroke (on page 0)
SWI Draw_StrokePath (on page 0)
SWI Draw_FlattenPath (on page 0)
SWI Draw_TransformPath (on page 0)

Software vectors

33

../graphics/draw.html#swi_draw_processpath
../graphics/draw.html#swi_draw_fill
../graphics/draw.html#swi_draw_stroke
../graphics/draw.html#swi_draw_strokepath
../graphics/draw.html#swi_draw_flattenpath
../graphics/draw.html#swi_draw_transformpath
../graphics/draw.html#chapter_draw_module
../graphics/draw.html#swi_draw_processpath
../graphics/draw.html#swi_draw_fill
../graphics/draw.html#swi_draw_stroke
../graphics/draw.html#swi_draw_strokepath
../graphics/draw.html#swi_draw_flattenpath
../graphics/draw.html#swi_draw_transformpath

Vector EconetV
(Vector &21)

Called whenever there is activity on the Econet

OOn enn entrytry
R0 = reason code (see below)
R1 = total size of data, or amount of data transferred, or no parameter passed

OOn en exitxit
R0 preserved
R1 preserved

InIntterruperruptsts
Interrupts are undefined
Fast interrupts are enabled

PrPrococessor modeessor mode
Processor is in SVC mode

RRe-ene-entrtrancancyy
Not defined

UUsese

EconetV is called whenever there is activity on the Econet. The reason code tells you what the
activity is.

The bottom nibble of the reason code indicates whether the activity has started (0), is part way
through (1) or finished (2). The next nibble gives the type of operation.

The table below shows the reason codes that are passed. The middle (and headless) column
shows what is passed in R1, or (for the less obvious cases) when the reason code is passed:

Software vectors

34

RReason codeeason code AActivityctivity

&10 R1 = total size of data NetFS_StartLoad

&11 R1 = amount of data transferred NetFS_PartLoad

&12 NetFS_FinishLoad

&20 R1 = total size of data NetFS_StartSave

&21 R1 = amount of data transferred NetFS_PartSave

&22 NetFS_FinishSave

&30 R1 = total size of data NetFS_StartCreate

&31 R1 = amount of data transferred NetFS_PartCreate

&32 NetFS_FinishCreate

&40 R1 = total size of data NetFS_StartGetBytes

&41 R1 = amount of data transferred NetFS_PartGetBytes

&42 NetFS_FinishGetBytes

&50 R1 = total size of data NetFS_StartPutBytes

&51 R1 = amount of data transferred NetFS_PartPutBytes

&52 NetFS_FinishPutBytes

&60 start of a Broadcast_Wait NetFS_StartWait

&62 end of a Broadcast_Wait NetFS_FinishWait

&70 R1 = total size of data NetFS_StartBroadcastLoad

&71 R1 = amount of data transferred NetFS_PartBroadcastLoad

&72 NetFS_FinishBroadcastLoad

&80 R1 = total size of data NetFS_StartBroadcastSave>

&81 R1 = amount of data transferred NetFS_PartBroadcastSave

&82 NetFS_FinishBroadcastSave

&C0 start to wait for a transmission to end Econet_StartTransmission

&C2 DoTransmit returns Econet_FinishTransmission

&D0 start to wait for a reception to end Econet_StartReception

&D2 WaitForReception returns Econet_FinishReception

This vector is normally claimed by the NetStatus module, which uses the Hourglass module to
display an hourglass while the Econet is busy. It passes on the call. If the Hourglass module is
disabled, the default action is to do nothing. See the chapter entitled Hourglass (on page 0), and
the chapter entitled NetStatus (on page 0).

See also the chapter entitled NetFS (on page 0), the chapter entitled NetPrint (on page 0), and the
chapter entitled Econet (on page 0).

RRelaelatted APIed APIss
None

Software vectors

35

../graphics/hourglass.html#chapter_hourglass
../networking/legacy/netstatus.html#chapter_netstatus
../filesystems/netfs.html#chapter_netfs
../filesystems/netprint.html#chapter_netprint
../networking/legacy/econet.html#chapter_econet

Examples
An eAn exxample prample progrogramam

The example program below illustrates all these important points. You can adapt it to write your
own routines.

The program claims WrchV (on page 0), adding a routine that:

● changes the case of the character depending on the state of a flag (preprocessing)
● calls the remaining routines on the vector to write the altered character
● toggles the flag (postprocessing)
● ensures that all registers are set to the values that would be returned by the default write

character routine
● returns control to the calling program.

Note that the program releases the vector before ending, even if an error occurs.

DIM code% 100
FOR pass%=0 TO 3 STEP 3
P%=code%
[OPT pass%
.vectorcode%
; save the entry value, the necessary state for the repeated call,
; and our workspace pointer
STMFD r13!, {r0, r10-r12, r14}

; do our preprocessing; as a trivial example, convert to the current case
LDRB r14, [r12] ; pick up upper/lowercase flag
CMP r14, #0 ; decide which territory manager table to use
LDREQ r1, lowercase_table%
LDRNE r1, uppercase_table%
LDRB r0, [r1, r0] ; look up character and put back in r0

; now do the call to the rest of the vector. Since this is WrchV, we know that
; we are in SVC mode; however, the code below will correctly call the rest of
; the vector whatever the mode.

STMFD r13!, {r15} ; pushes PC+12, complete with flags and mode
ADD r12, r13, #8 ; stack contains pc,r0,r10,r11,r12,r14

; so point at the stacked r10
LDMIA r12, {r10-r12, r15} ; and restore the state needed to call the

; rest of the chain (r10 and r11), and
; “return” to the non-vector claiming address.
; The load of r12 wastes one cycle.

; we are now at the pc+12 that we stacked; this is therefore where the
; rest of the vector returns to when it has finished.

LDR r12, [r13, #12] ; reload our workspace pointer
; Note that the offset of #12 - and the earlier
; #8 when we pushed onto the stack - refer to
; this example only and are not general
; Note also that the pc we pushed was
; pulled by the vector claimer.

; we could now do some more processing, set r0 up to another character,
; and loop round to done_preprocess% again; instead, we’ll just do some
; example postprocessing; we’ll toggle our upper/lowercase flag.

LDRB r14, [r12]

Examples

36

../kernel/io/charoutput.html#vector_wrchv

EOR r14, r14, #1
STRB r14, [r12]

; now return; if there was no error then intercept the call to the
; vector, returning the original character.

LDMVCFD r13!, {r0, r10-r12, r14, r15}

; could pass the call on instead by omitting r14 from the addresses
; to pull - ie use LDMVCFD r13!, {r0, r10-r12, r15}
; there was an error; set up the correct error pointer, flags, and
; claim the vector.

STR r0, [r13] ; save the error pointer
LDMFD r13!, {r0, r10-r12, r14, r15} ; return with V still set, and claim the vector

; reserve space to store the addresses of the territory manager case tables
.lowercase_table%
EQUD 0
.uppercase_table%
EQUD 0
]
NEXT

REM Get addresses of the territory manager case tables
SYS “Territory_LowerCaseTable”,-1 TO !lowercase_table%
SYS “Territory_UpperCaseTable”,-1 TO !uppercase_table%
DIM flag% 1
?flag%=0
WrchV%=3
ON ERROR SYS “XOS_Release”, WrchV%, vectorcode%, flag%: PRINTREPORT$: END
SYS “OS_Claim”, WrchV%, vectorcode%, flag%
REPEAT

INPUT command$
OSCLI command$

UNTIL command$=””
SYS “XOS_Release”, WrchV%, vectorcode%, flag%
END

Software vectors

37

Document information
Maintainer(s):Maintainer(s): RISCOS Ltd <developer@riscos.com>

HistoryHistory:: RRevisionevision DDateate AuthorAuthor ChangesChanges
1 ROL Initial version
2 04 Mar 2004 ROL Filled out from original document

● Summary of vectors added.
● IrqV documented.
● ColourV linked to (in ColourTrans

documentation).
● PaletteV documented.

DDisclaimerisclaimer:: Copyright © Pace Micro Technology plc, 2001.
Portions copyright © RISCOS Ltd, 2001-2004.
Published by RISCOS Limited.
No part of this publication may be reproduced or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, or stored in any
retrieval system of any nature, without the written permission of the copyright holder
and the publisher, application for which shall be made to the publisher.

Document information

38

mailto:developer@riscos.com

	Software vectors
	Introduction
	Overview
	Claiming vectors
	An example
	Vector chains
	When not to intercept a vector
	Multiply installing the same routine
	Desktop applications

	Technical details
	Use of registers
	Processor modes
	SVC mode
	IRQ mode

	Returning errors
	Returning from a vectored routine
	Passing on the call
	Intercepting the call

	More complex uses of vectors
	Vector defintions
	List of software vectors
	Additional information on software vectors
	About the filing system vectors
	Other vectors and resets

	SWI Calls
	OS_Claim
	OS_Release
	OS_CallAVector
	OS_AddToVector
	OS_DelinkApplication
	OS_RelinkApplication

	Software vectors
	Vector UserV
	Vector IrqV
	Vector InsV
	Vector InsV 0 (InsertByteInBuffer)
	Vector InsV 1 (InsertBlockInBuffer)
	Vector RemV
	Vector RemV 0 (RemoveByteFromBuffer)
	Vector RemV 1 (RemoveBlockFromBuffer)
	Vector CnpV
	Vector UKSWIV
	Vector TickerV
	Vector DrawV
	Vector EconetV

	Examples
	An example program

	Document information
	Initial version
	Filled out from original document

